TY - JOUR A1 - Rabe, Torsten A1 - Kuchenbecker, Petra A1 - Schulz, Bärbel A1 - Schmidt, M. T1 - Hot Embossing: An Alternative Method to Produce Cavities in Ceramic Multilayer N2 - New applications of ceramic multilayers, for example, in biotechnology, sensor technology, and chemical micro-reaction technique, call for cavities with complex geometries. Hot embossing offers a promising, cost-effective way to generate these structures on the surfaces of green tapes or laminates. Cavities inside low-temperature co-fired ceramic multilayer were manufactured by a combination of hot embossing, lamination by a special adhesive technique, and zero shrinkage sintering. The edge and surface quality in the green state as well as the sintered multilayers with surface structures and cavities were extensively characterized by laser surface scanning, optical and ultrasound microscopy. Sintering shrinkage of hot-embossed laminates could be reduced in the x and y directions to less than 0.5%. KW - Keramische Multilayer KW - LTCC KW - Lamination KW - Heißprägen KW - Zero Shrinkage Sinterung PY - 2007 DO - https://doi.org/10.1111/j.1744-7402.2007.02117.x SN - 1546-542X SN - 1744-7402 VL - 4 IS - 1 SP - 38 EP - 46 PB - American Ceramic Soc. CY - Westerville, Ohio AN - OPUS4-16125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuchenbecker, Petra A1 - Gemeinert, Marion A1 - Rabe, Torsten T1 - Inter-laboratory study of particle size distribution measurements by laser diffraction N2 - Presented are results of an inter-laboratory study (ILS) for measurements of the particle size distribution of fine powders in wet dispersion by laser diffraction. In this proficiency test 32 participants from four countries took part. They utilized 13 different devices from 7 manufacturers. Three commercial powders (glass spheres and two silicon carbide powders) showing a median diameter of about 30, 10 and 1 µm (volume distribution), respectively, were chosen for the procedure. A homogeneity study was carried out after the units had been separated and bottled. All participants received their test samples including a description of the standard operating procedures based on ISO 13320:2009 – to ensure that experiments were performed in a consistent manner. Results were calculated using the Mie Theory. The general means and the precision of the results were estimated in accordance with ISO 5725-2:2002. The evaluation showed excellent values of repeatability standard deviation. Values of 4 to 21?% of the reproducibility standard deviation of the results were found in the particle size range above 1 µm. Much larger deviation between the labs was detected in the case of smaller particles. Differences in the design of the analyzers were unambiguously identified as the main reason for the large deviations. KW - Accuracy experiment KW - Inter-laboratory study KW - Laser diffraction KW - Micron and submicron powder KW - Particle size distribution PY - 2012 DO - https://doi.org/10.1002/ppsc.201000026 SN - 0934-0866 SN - 1521-4117 VL - 29 IS - 4 SP - 304 EP - 310 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-26721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gibson, N. A1 - Kuchenbecker, Petra A1 - Rasmussen, K. A1 - Hodoroaba, Vasile-Dan A1 - Rauscher, H. ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A.G. T1 - Volume-specific surface area by gas adsorption analysis with the BET method N2 - This chapter first gives an introduction to the concepts of SSA and volume-specific surface area (VSSA) and an outline of the BET method. It continues with a discussion of the relationship between particle size, shape, and the VSSA, followed by an overview of instrumentation, experimental methods, and standards. Finally, sections on the use of the VSSA as a tool to identify nanomaterials and non-nanomaterials and its role in a regulatory context provide some insight on the importance of VSSA in the current Regulation of nanomaterials. KW - Nanomaterials KW - Volume specific surface area PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00017-1 SP - 265 EP - 293 PB - Elsevier CY - Amsterdam AN - OPUS4-49572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Embedding and cross-sectioning as a sample preparation procedure for accurate and representative size and shape measurement of nanopowders N2 - Reliable measurement of the size of polydisperse, complex-shaped commercial nanopowders is a difficult but necessary task, e.g., for regulatory requirements and toxicity risk assessment. Suitable methods exist for the accurate characterization of the size of non-aggregated, stabilized, spherical and monodisperse nanoparticles. In contrast, industrial nanoscale powders usually require dedicated sample preparation procedures developed for the analysis method of choice. These nano-powders tend to agglomerate and/or aggregate, a behavior which in combination with an innate broad particle size distribution and irregular shape often significantly alters the achievable accuracy of the measured size parameters. The present study systematically tests two commercially available nanoscale powders using different sample preparation methods for correlative analysis by scanning electron microscopy, dynamic light scattering, Brunauer–Emmet–Teller method and differential mobility analysis. One focus was set on the sample preparation by embedding nanoparticles in carbon-based hot-mounting resin. Literature on this topic is scarce and the accuracy of the data extracted from cross sections of these particles is unclearly stated. In this paper systematic simulations on the deviation of the size parameters of well-defined series of nanoparticles with different shapes from the nominal value were carried out and the contributing factors are discussed. KW - Nanopowder KW - Electron microscopy KW - Sample preparation KW - Cross-sectioning KW - Cerium oxide KW - Zinc oxide PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593289 DO - https://doi.org/10.1038/s41598-023-51094-0 SN - 2045-2322 VL - 14 SP - 1 EP - 10 PB - Springer Nature CY - London AN - OPUS4-59328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -