TY - CONF A1 - Geißler, Peter A1 - Iaconeta, I. A1 - Baeßler, Matthias A1 - Cuéllar, Pablo T1 - Modelling of compaction grouting using the implicit MPM N2 - Compaction grouting involves the injection under high pressure of a highly viscous grout into the soil to displace and compact the surrounding soil without fracturing it. This ground improvement technique has been used widely for settlement control, increasing liquefaction resistance or bearing capacity of soil under new or existing structures. The work presented here aims to show some numerical and experimental investigations being carried out to understand the compaction mechanism and the soil-grout interaction, which is crucial for a successful usage of this technique. To investigate compaction grouting in the laboratory under various stress conditions, a large-scale testing chamber has been developed. The grout was injected directly at the transparent vertical window of the chamber in order to investigate the possibility to monitor the injection process with a camera to measure the in-plane soil displacements and strains by means of the PIV technique. The other aim of this study is to develop a numerical model, which should be able to deal with large displacements and deformations and to simulate the change in shape of the distinct soil-grout interface solely as a result of the interaction between the injected grout and the surrounding soil. Based on these considerations, as a numerical technique, we employ the implicit Material Point Method based on a mixed formulation, which is implemented in the open source Kratos Multiphysics framework. In contrast to standard FE formulations, the usage of the MPM avoids both the numerical instability caused by extensive mesh distortion and the high computational costs of remeshing. The main results focus on the different evolution of the grout bulb inside the soil under various stress states. T2 - 28th ALERT Workshop CY - Aussois, France DA - 02.10.2017 KW - Compaction grouting KW - Soil-grout interface KW - Material point method (MPM) KW - Mixed formulation KW - Particle image velocimetry (PIV) PY - 2017 AN - OPUS4-42432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Peter A1 - Cuéllar, Pablo A1 - Hüsken, Götz A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Insights into compaction grouting for offshore pile foundations T2 - Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering OMAE 2018 N2 - The authors are currently investigating the possibility to apply compaction grouting for offshore pile foundations (Jacket piles as well as monopiles) as a possible retrofitting technique for an optimised foundation concept. In this research project, we are developing a design approach aiming to predict the ideal amount and properties of a grout for a specific soil situation and desired improvement of pile bearing capacity after Installation and during service time. Both numerical and experimental tests have been carried out to investigate the injection process during which a highly viscous grout is injected into the soil under high pressure to displace and compact the surrounding soil without fracturing it. The implicit Material Point Method (MPM) based on a mixed formulation is the numerical technique chosen to deal with the expected large deformations and the arbitrary shape of the developing grout bulb. The usage of MPM prevents both the need of remeshing and the numerical instability induced by extensive mesh distortion. For validation with experimental results, we have constructed a testing chamber with one transparent sidewall. This chamber enables us to observe the injection process directly at the transparent vertical window and to measure the in-plane soil displacements and strains by means of the Digital Image Correlation (DIC) technique. The results already reveal the interrelation of soil and grout properties for a successful usage of this common ground improvement technique. T2 - 37th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2018) CY - Madrid, Spain DA - 18.06.2018 KW - Offshore pile foundation KW - Compaction grouting KW - Material Point Method (MPM) KW - Mixed formulation KW - Digital Image Correlation (DIC) PY - 2018 SN - 978-0-7918-5130-2 SN - 2153-4772 VL - 9 SP - V009T10A013, 1 EP - 9 AN - OPUS4-46004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -