TY - CONF A1 - Wasmer, Paul A1 - Bulling, Jannis A1 - Prager, Jens T1 - Ultrasonic sensor based on phononic crystals N2 - An essential task in many industries, e.g. food, petrol or chemical industry, is the precise and accurate characterization of liquids. Therefore, the development of innovative in-line sensors is of great interest. New concepts based on periodic structures, so-called phononic crystals (PnCs), are an interesting idea for the design of innovative sensors. A PnC-based sensor can be designed by introducing a resonance inside a bandgap, a frequency region where no wave propagation is allowed. High-Q measurement systems using PnCs are already reported in the literature. However, existing designs cannot be implemented into a piping system directly, but need special fittings, openings or by-passes to be in contact with the liquid. To circumvent this issue, we develop a new sensor based on PnCs, which can be directly implemented as part of the piping system. For this purpose, we use a PnC consisting of hollow cylinders with a periodic change of the outer diameter. A bandgap could be found for the described geometry without fluid in simulation and measurement. However, simulations show, that a bandgap for fluid-filled cylinders can only be obtained for quasi-longitudinal modes. Hence, we propose a mode selective excitation for the sensor. T2 - ICA 2019 CY - Aachen, Germany DA - 09.09.2019 KW - Phononic crystal KW - Ultrasound PY - 2019 SN - 978-3-939296-15-7 SN - 2226-7808 SN - 2415-1599 SP - 969 EP - 976 AN - OPUS4-48860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Bulling, Jannis A1 - Gravenkamp, H. A1 - Prager, Jens T1 - Acoustic-structure interaction in the Scaled Boundary Finite Element Method for primsatic geometries N2 - Due to the short wavelength compared to the dimensions of the structure, the simulation of ultrasonic waves is still a challenging task. A numerical method well suited for this purpose is the semi-analytical Scaled Boundary Finite Element Method (SBFEM). When applying this method, only the boundary of a computational domain is discretized using finite elements, while the interior is described by an analytical ansatz. Hence, the number of degrees of freedom is reduced significantly compared to the classical Finite Element Method (FEM). In recent years, a particular formulation of the SBFEM for the simulation of ultrasonic guided waves was developed. The method constitutes an efficient algorithm for prismatic structures of arbitrary length, such as plates, pipes, or beams. Wave propagation phenomena in such structures can be modeled for isotropic and anisotropic inhomogeneous waveguides. Even though the method is an efficient tool for the simulation of guided waves in solid media, a reliable model for the simulation of acoustic wave propagation in fluids as well as acoustic-structure interaction in terms of SBFEM is still missing. In principle, the fluid can be described by a displacement-based formulation and thus be implemented in existing SBFEM algorithms for solid bodies. However, due to the discretization with classical finite elements, spurious modes occur, which cannot be separated from the physical modes straightforwardly. The spurious modes can be suppressed using a penalty parameter. Although very accurate results were achieved for some problems, this procedure has been proven unreliable for certain cases. For this reason, we propose a different approach in this contribution. We employ a pressure model to simulate the acoustic behavior of fluids. The implementation of the pressure model results in a higher effort due to the necessity of incorporating coupling terms, but it presents a stable alternative without spurious modes. The accuracy of the method is demonstrated in comparison with analytical solutions and results obtained using the FEM. T2 - GACM 2019 CY - Kassel, Germany DA - 28.08.2019 KW - Scaled Boundary Finite Element Method KW - Guided Waves KW - Ultrasound KW - Acoustic-Structure Interaction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497364 UR - https://www.upress.uni-kassel.de/katalog/abstract.php?978-3-7376-5093-9 SN - 978-3-86219-5093-9 DO - https://doi.org/10.19211/KUP9783737650939 SP - 347 EP - 350 AN - OPUS4-49736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Bulling, Jannis A1 - Prager, Jens T1 - Entwicklung eines Ultraschallrohrsensors auf Basis phononischer Kristalle N2 - Die Messung von Flüssigkeitskonzentrationen in Rohrsystemen ist von großem Interesse für viele unterschiedliche Anwendungen. Die meisten Messsysteme sind jedoch nicht in der Lage, die Flüssigkeit direkt im Rohr zu untersuchen und es muss eine zusätzliche Vorrichtung, wie z.B. einem Bypass, angebracht werden, welche den Kontakt zwischen Flüssigkeit und Sensor ermöglicht. Um den Einbauaufwand gering zu halten und die Strömungseigenschaften des Rohres nicht zu beeinflussen, wird ein neuartiges Messsystem entwickelt, welches als Teil der Rohrwand ausgeführt werden kann. Dieses neuartige System ist angelehnt an die Idee der phononischen Kristallen (PnK). PnK’s bestehen im Allgemeinen aus einem Matrixmaterial, in welchem Streuzentren periodisch angeordnet sind. Dies führt beim Eintreffen einer akustischen Welle in definierten Frequenz-bereichen, sogenannter Bandlücken, zu zunehmender destruktiven Interferenz. Wird innerhalb einer solchen Bandlücke durch Einbringen einer flüssigkeitsgefüllten Kavität ein Resonanzverhalten erzeugt, kann dies genutzt werden, um die Flüssigkeit zu analysieren. Im Rahmen von Voruntersuchung wird zunächst das akustische Verhalten des PnK’s, welcher für die Sensorentwicklung genutzt werden soll, unter Vernachlässigung der Flüssigkeit ausführlich untersucht. Hierbei werden zunächst die Bandlücken ermittelt und das Übertragungsverhalten betrachtet. Dieses wird im Anschluss experimentell überprüft. T2 - DAGA 2019 - 45. Jahrestagung für Akustik CY - Rostock, Germany DA - 18.03.2019 KW - Phononischer Kristall KW - Ultraschall KW - Flüssigkeitssensor KW - Scaled Boundary Finite Element Method PY - 2019 SP - 1030 EP - 1033 AN - OPUS4-47780 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -