TY - RPRT A1 - Schneider, Paul T1 - Theorie der dissipativen Luftschalldämmung bei einem idealisotropen porösen Material mit starrem Skelett für senkrechten, schrägen und allseitigen Schalleinfall N2 - Im Aufgabenbereich von Arbeits- und Umweltschutz ist die Lärmbekämpfung als Teilgebiet der technischen Akustik sehr wichtig. Dieser Bericht beschäftigt sich mit besonderen Problemstellungen der Luftschalldämmung. T3 - BAM Forschungsberichtreihe - 29 PY - 1974 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-4219 SN - 0938-5533 VL - 29 SP - 1 EP - 78 PB - Bundesanstalt für Materialprüfung (BAM) CY - Berlin AN - OPUS4-421 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schneider, Paul T1 - Zur Problematik der Prüfung des Luftschallschutzes von Bauelementen bei unterschiedlichen Einbaubedingungen N2 - Schallschutz von Außenfenstern zwischen zwei Räumen bei der Verwendung moderner Baustoffe ist Thema dieser Arbeit, in der aus einer allgemeinen Betrachtung von n- Teilflächen unterschiedlicher Größe und Transmission alle Probleme bei der Prüfung und Wertung der Luftschalldämmung in der Bau-Akustik durch jeweils modifizierte Zusatzbedingungen geschlossen abgeleitet werden. T3 - BAM Forschungsberichtreihe - 6 PY - 1971 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-4448 SN - 0938-5533 VL - 6 SP - 1 EP - 58 PB - Bundesanstalt für Materialprüfung (BAM) CY - Berlin AN - OPUS4-444 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Gerards, Paul A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for data and structural integrity management for support structures in offshore wind farms based on building information modelling T2 - Proc. of the 8th Intl. Symp. on Reliability Engineering and Risk Management (ISRERM 2022) N2 - Support structures of wind turbines in German offshore wind farms are regularly inspected. Currently, inspection outcomes are generally not systematically recorded. This prevents their consistent handling and processing, which is a key requirement to enable an efficient structural integrity management. As part of the DiMoWind-Inspect project, a data model and reference designation system for such inspection results is developed to facilitate their identification, localization, quantification, tracing and linking throughout the lifetime of a wind farm and beyond. The inspection results together with structural health monitoring results and information on repairs form the basis for assessing and predicting the structural condition, estimating the remaining lifetime, and planning of future inspections, structural health monitoring, and repairs. As a basis for developing a digital structural integrity management, a generic framework is proposed in this paper, which describes the stakeholders, data, models, processes and workflows of the integrity management of support structures in offshore wind farms and their interrelations. The framework adopts a building information modelling approach to describe the information relevant to the structural integrity management. The central digital space of the framework is a common data environment. An implementation of the framework will enable a digital structural integrity management in which inspection, structural health monitoring, repair, assessment and planning outcomes generated throughout the life cycle of a wind farm can be consistently collected, managed, shared and processed by the relevant shareholders. T2 - 8th International Symposium on Reliability Engineering and Risk Management CY - Hannover, Germany DA - 04.09.2022 KW - Offshore wind energy KW - support structures KW - structural health monitoring KW - building information modelling KW - structural integrity management PY - 2022 DO - https://doi.org/10.3850/978-981-18-5184-1_MS-04-161-cd SP - 111 EP - 117 PB - Research Publishing CY - Singapore AN - OPUS4-55656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerards-Wünsche, Paul A1 - Ratkovac, Mirjana A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for assessing the reliability of crack luminescence – an automated fatigue crack detection system T2 - SPIE Conference Smart Structures + Nondestructive Evaluation 2023 N2 - The new crack luminescence method offers the possibility of making fatigue surface cracks in metallic materials more visible during inspections through a special coating system. This coating system consists of two layers, whereby the first layer has fluorescent properties and emits visible light as soon as it is irradiated by UV light. The top layer is black and is designed to prevent the fluorescent layer from emitting if no crack develops in the underlying material. The technique proved particularly useful in a wide variety of fatigue tests of steel components under laboratory conditions. Moreover, it has the potential to be used in various industrial applications. To enable industrial deployment and integration into maintenance strategies, a concept study is developed in this contribution, resulting in a qualification framework that can serve as a foundation for determining the reliability of the crack luminescence system in terms of a probability of detection curve. Within this study, factors causing measurement variability and uncertainty are being determined and their influences assessed. Due to the extension of the system by a moving computer vision system for automated crack detection using artificial intelligence, additional long-term effects associated with structural health monitoring systems need to be incorporated into an extended probability of detection study as part of the technical justification. Finally, important aspects and findings related to design of experiments are discussed, and a framework for reliability assessment of a new optical crack monitoring method is presented, emphasizing the influence of various uncertainty parameters, including long-term effects such as system ageing. T2 - SPIE Conference Smart Structures + Nondestructive Evaluation 2023 CY - Long Beach, CA, USA DA - 24.03.2023 KW - Structural Health Monitoring KW - Non-Destructive Evaluation KW - Probability of Detection KW - Reliability KW - Artificial Intelligence KW - Computer Vision KW - Crack Luminescence KW - Wind PY - 2023 SN - 978-1-5106-6086-1 DO - https://doi.org/10.1117/12.2658390 SP - 1 EP - 15 AN - OPUS4-57244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants JF - Journal of Nanoparticle Research N2 - The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe3O4) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H2O2 dosage, and UV light irradiation) on the Degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method. KW - Nanocatalysts KW - Photo-Fenton oxidation KW - Wastewater KW - Bisphenol A degradation KW - Environment KW - Mitigation PY - 2015 UR - http://link.springer.com/article/10.1007/s11051-015-3290-0 DO - https://doi.org/10.1007/s11051-015-3290-0 VL - 17 IS - 12 SP - 476 (1) EP - 476 (10) PB - Springer AN - OPUS4-38758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, M. A1 - Macaev, F. A1 - Boldescu, V. A1 - Hodoroaba, Vasile-Dan A1 - Nadejde, C. A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Removal of pollutants by the new Fenton-like highly active catalysts containing an imidazolium salt and a Schiff base JF - Applied Catalysis B: Environmental N2 - Two iron-based molten salts comprising an imidazolium and Schiff base were evaluated as catalysts for removal of carbamazepine (CBZ) from water. The catalysts were fully characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), nuclear magnetic resonance spectroscopy (NMR), electrospray ionisation–mass spectrometry (ESI–MS), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption–desorption isotherms (BET). Additionally, the formation of photo-sensitized oxygen was investigated by spin-trapping using electron spin resonance (ESR). The catalytic activity in heterogeneous oxidation of the micropollutant (CBZ) was also evaluated. The effects of catalyst loading, pH, H2O2 dosage and UV light on the oxidation of the selected compound were investigated. After 15 min of UVA irradiation in the presence of 200 μM H2O2, CBZ was completely removed over both catalysts. KW - Fe-based highly active ionic liquids KW - Characterization of catalysts KW - Removal KW - Singlet oxygen KW - Carbamazepine PY - 2016 DO - https://doi.org/10.1016/j.apcatb.2015.10.032 SN - 0926-3373 VL - 183 SP - 335 EP - 342 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Green Fenton-like magnetic nanocatalysts: Synthesis, characterization and catalytic application JF - Applied catalysis / B N2 - Five iron oxalate core–shell magnetite nanoparticles catalysts are evaluated as magnetic heterogeneous materials. Simple and efficient procedures for the preparation of magnetic iron oxalate coated nanoparticles are presented. The catalysts are fully characterized using various investigation techniques. Additionally, the formation of photo-sensitized oxygen by spin-trapping using electron spin resonance is investigated. The catalytic activity of two model substrates (carbamazepine and bisphenol A) is also evaluated. The effect of operational parameters (catalyst and H2O2 concentration, UVA light) on the degradation performance of the oxidation process is investigated. The obtained reaction rates depend on the nature of the compound and increase with iron oxide shell thickness of the catalyst. Moreover, these materials show a significant activity during two consecutive tests. The optimum experimental parameters are found to be 1.0 g L-1 of catalysts, 10 mM H2O2, under UVA irradiation. More than 99% of both substrates are removed after 30 min of reaction time under the experimental conditions given above. The results obtained show that the catalysts are suitable candidates for the removal of pollutants in wastewaters by means of the Fenton heterogeneous reaction. KW - Magnetic core–shell nanocatalysts KW - Characterization KW - Fenton oxidation KW - Micropollutants KW - Water treatment PY - 2015 DO - https://doi.org/10.1016/j.apcatb.2015.04.050 SN - 0926-3373 SN - 1873-3883 VL - 176-177 SP - 667 EP - 677 PB - Elsevier CY - Amsterdam AN - OPUS4-33820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Green Fenton-like magnetic nanocatalysts: Synthesis, characterization and catalytic application JF - Applied Catalysis B: Environmental N2 - Five iron oxalate core–shell magnetite nanoparticles catalysts are evaluated as magnetic heterogeneous materials. Simple and efficient procedures for the preparation of magnetic iron oxalate coated nanoparticles are presented. The catalysts are fully characterized using various investigation techniques. Additionally, the formation of photo-sensitized oxygen by spin-trapping using electron spin resonance is investigated. The catalytic activity of two model substrates (carbamazepine and bisphenol A) is also evaluated. The effect of operational parameters (catalyst and H2O2 concentration, UVA light) on the degradation performance of the oxidation process is investigated. The obtained reaction rates depend on the nature of the compound and increase with iron oxide shell thickness of the catalyst. Moreover, these materials show a significant activity during two consecutive tests. The optimum experimental parameters are found to be 1.0 g L−1 of catalysts, 10 mM H2O2, under UVA irradiation. More than 99% of both substrates are removed after 30 min of reaction time under the experimental conditions given above. The results obtained show that the catalysts are suitable candidates for the removal of pollutants in wastewaters by means of the Fenton heterogeneous reaction. KW - Five iron oxalate core–shell magnetite nanoparticles catalysts are evaluated as magnetic heterogeneous KW - Characterization KW - Micropollutants PY - 2015 DO - https://doi.org/10.1016/j.apcatb.2015.04.050 SN - 0926-3373 SN - 1873-3883 VL - 176-177 SP - 667 EP - 677 PB - Elsevier AN - OPUS4-40072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nadejde, C. A1 - Neamtu, Mariana A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Green Fenton-like catalysts for the removal of water pollutants T2 - Materials for Energy, Efficiency and Sustainability N2 - Two types of surface modified magnetite (Fe3O4) nanoparticles, coated with either tannic acid (TA) or dissolved natural organic matter (NOM), were evaluated as magnetic heterogeneous catalysts. Simple and efficient procedures for the synthesis of the magnetic catalysts were employed, their properties being fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing Bisphenol A (BPA) over the catalysts was comparatively studied. The optimum experimental parameters were: 1g/L of catalysts, 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80% of BPA were removed after 30 minutes of reaction time under the specified experimental conditions. The results showed that the obtained catalysts are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction T2 - TechConnect World Innovation Conference Nanotech 2015 CY - Washington, DC, Maryland, USA DA - 14.06.2015 KW - Nanocatalysts KW - Characterization KW - Fenton oxidation KW - Wastewater KW - Bisphenol A degradation PY - 2015 SN - 978-1- 4987-4733-2 SN - 978-1-4987-4728-8 VL - 2 SP - 87 EP - 90 PB - CRC Press, Taylor&Francis Group AN - OPUS4-40074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -