TY - THES A1 - Rosemann, Paul T1 - Einfluss der Wärmebehandlung auf die Korrosionsbeständigkeit martensitischer nichtrostender Stähle T2 - Werkstofftechnik N2 - Die Korrosionsbeständigkeit martensitischer nichtrostender Stähle (MNS) wird wesentlich durch die Legierungszusammensetzung und die Wärmebehandlung (WB) bestimmt. Verschiedene wissenschaftliche Arbeiten haben bereits gezeigt, dass der Anteil an Chromkarbiden im Gefüge von MNS sehr stark durch die WB (Austenitisierungstemperatur, Abkühlgeschwindigkeit und Anlasstemperatur) beeinflusst wird. Jedoch wurde der Zusammenhang zwischen den einzelnen Teilschritten sowie Parametern der WB und der Korrosionsbeständigkeit von MNS bisher nur unzureichend hergestellt. Die Literatur liefert außerdem gegensätzliche Aussagen über den Einfluss der Abkühlgeschwindigkeit auf die Korrosionsbeständigkeit von MNS. Daher werden im Rahmen dieser Arbeit systematische Grundlagenuntersuchungen an vier technisch relevanten MNS (X20Cr13, X46Cr13, X50CrMoV15 und X30CrMoN15-1) durchgeführt, um den Einfluss der WB auf die Korrosionsbeständigkeit aufzuklären. Es werden umfangreiche experimentelle Ergebnisse hinsichtlich Gefüge, Härte und Korrosionsbeständigkeit (EPR, KorroPad, kritische Lochkorrosionspotentiale) vorgestellt und mit thermodynamischen Berechnungen (ThermoCalc) korreliert. Aus den Ergebnissen wird außerdem abgeleitet, wie Kohlenstoff- und Stickstoffgehalt die Korrosionsbeständigkeit in Relation zur WB beeinflussen. Damit wird der Einfluss aller Wärmebehandlungsschritte und -parameter erstmals eindeutig und unabhängig voneinander für MNS beschrieben. Weiterführend wird erläutert, mit welchem Legierungskonzept und mit welcher WB MNS mit optimaler Korrosionsbeständigkeit hergestellt werden können und wie dies experimentell an technischen Produkten nachweisbar ist. KW - Wärmebehandlung KW - Korrosion KW - Nichtrostender Stahl KW - Lochkorrosion KW - EPR KW - KorroPad KW - Chromverarmung PY - 2017 SN - 978-3-8440-5404-0 DO - https://doi.org/10.2370/9783844054040 SP - 1 EP - 172 PB - Shaker Verlag CY - Aachen AN - OPUS4-41144 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Halle, T. T1 - Einfluss der Schweißnaht-Nachbehandlung auf die Korrosionsbeständigkeit vom Duplexstahl 1.4062 T2 - 16. Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik N2 - Der Duplexstahl 1.4062 (X2CrNi22-2) hat sich im Bauwesen als Werkstoffalternative zu den nichtrostenden Austeniten etabliert. Die Korrosionsbeständigkeit von Schweißverbindungen wird, neben dem Grundwerkstoff, dem Schweißzusatzwerkstoff und dem Schweißverfahren, auch sehr stark von der Schweißnaht-Nachbehandlung beeinflusst. Je nach zukünftigem Anwendungsbereich, geforderter Optik und Korrosionsbeständigkeit wird die Schweißnaht geschliffen, gebeizt, elektropoliert oder gestrahlt, um die beim Schweißen entstehenden An-lauffarben zu entfernen. Gestrahlte Oberflächen sind in der industriellen Praxis häufig anzutreffen, da sie deutlich schneller und kostengünstiger herzustellen sind als geschliffene, gebeizte oder polierte Oberflächen. Das Strahlen mit Korund ist außerdem effektiver als das Strahlen mit Glasperlen. In den letzten Jahren wurden korrosionsanfällige Oberflächen bei nichtrostenden Stählen beobachtet, wenn diese mit Korund geschliffen wurden. Daher wird nun auch beim Strahlen kritisch hinterfragt, ob die eingesetzten Strahlmittel die Korrosionsbeständigkeit beeinflussen. Diese Fragestellung wird beantwortet, indem geschliffene, gebeizte, polierte und mit verschiedenen Strahlmitteln gestrahlte Schweißverbindungen vom Duplexstahl 1.4062 im Vergleich zu gleichartig behandeltem Walzmaterial untersucht werden. Die Ergebnisse der Korrosionsuntersuchungen werden vorgestellt und mit den rasterelektronenmikroskopischen Untersuchungen der gestrahlten Oberflächen korreliert. T2 - 16. Sommerkurs Werkstoffe und Fügen CY - Magdeburg, Germany DA - 08.09.2017 KW - Duplexstahl KW - Nichtrostender Stahl KW - Schweißen KW - Oberflächenbearbeitung KW - Strahlen KW - Korrosion PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 63 EP - 70 AN - OPUS4-41888 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Kauss, N. A1 - Müller, C. A1 - Halle, T. T1 - Einfluss der Abkühlgeschwindigkeit auf die Neigung zur Chromverarmung martensitischer nichtrostender Stähle T2 - 16. Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik N2 - Die Legierungselemente (Chrom und Kohlenstoff) und die Wärmebehandlung bestimmen Korrosionsbeständigkeit und Härte martensitischer nichtrostender Stähle. Verschiedene wissenschaftliche Arbeiten haben bereits gezeigt, dass die Korrosionsbeständigkeit sehr stark vom Anteil an Chromkarbiden im Gefüge bestimmt wird. Der kombinierte Einfluss von Kohlenstoffgehalt und der Abkühlgeschwindigkeit beim Härten wurde mit Fokus auf die Korrosionsbeständigkeit bisher nur unzureichend untersucht. Die Literatur liefert außerdem gegensätzliche Aussagen über den Einfluss der Abkühlgeschwindigkeit, was möglicherweise auf unterschiedliche Kohlenstoffgehalte zurückgeführt werden kann. In dieser Arbeit wird daher systematisch untersucht, ab welcher Abkühlgeschwindigkeit es bei den Werkstoffen X20Cr13 und X46Cr13 zu Karbidbildung und Chromverarmung kommt. Die Variation der Abkühlgeschwindigkeit erfolgte für die industriell relevante Härtetemperatur von 1050 °C mit dem Stirnabschreckversuch. In Abhängigkeit von der Abkühlgeschwindigkeit wurden an den Stirnabschreckproben Gefüge, Härte und Korrosionsbeständigkeit (EPR, kritische Lochkorrosionspotentiale) untersucht und die Ergebnisse mit thermodynamischen Berechnungen (ThermoCalc) korreliert. Aus den Ergebnissen wird abgeleitet, unter welchen Bedingungen die Abkühlgeschwindigkeit die Korrosionsbeständigkeit beeinflusst. T2 - 16. Sommerkurs Werkstoffe und Fügen CY - Magdeburg, Germany DA - 08.09.2017 KW - Wärmebehandlung KW - Korrosion KW - Chromverarmung KW - EPR KW - Martensitischer nichtrostender Stahl KW - ThermoCalc KW - Lochkorrosion PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 71 EP - 78 AN - OPUS4-41889 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Halle, T. T1 - Sensibilisierungsverhalten vom stickstofflegierten, austenitischen, nichtrostenden Stahl 1.4456 T2 - Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik N2 - Austenitische nichtrostende Stähle kommen seit vielen Jahren in den verschiedensten industriellen Zweigen zum Einsatz (Pharma-, Medizin- und Lebensmittelindustrie, Bauwesen, Energie- und Antriebstechnik). Druckaufgestickte nichtrostende Austenite mit ca. 19 Gew.-% Mangan und 0,8 Gew.-% Stickstoff, sind als nickelfreie Variante seit einigen Jahren großtechnisch auf dem Markt verfügbar. In diesen Stählen wird die austenitische Matrix ohne die Legierungszugabe von Nickel sichergestellt, während gleichzeitig die korrosive Beständigkeit und die mechanischen Eigenschaften verbessert werden. Wie bei allen nichtrostenden Stählen beeinflussen die chemische Zusammensetzung und die Wärmebehandlung entscheidend das Gefüge und die Eigenschaften. Durch Lösungsglühen, Abschrecken und gezieltes Kaltverfestigen können bei diesen Stählen hervorragende mechanische Kennwerte erreicht werden (Rm von 900 MPa bis 2.000 MPa, A5 > 50 %, Av > 350 J). In der Regel dient das Lösungsglühen der Beseitigung unerwünschter Ausscheidungsphasen (Cr2N, M23C6 und Sigma-Phase) und der homogenen Verteilung der Legierungselemente im Austenit, was auch die Voraussetzung für eine hohe Korrosionsbeständigkeit darstellt. Wird die homogene Verteilung der Legierungselemente (Cr, Mo und N) durch suboptimale Wärmebehandlungs-, Verarbeitungs- oder Einsatzbedingungen beeinträchtigt, kann die korrosive Beständigkeit nicht auf Dauer gewährleistet werden. Daher ist die genaue Kenntnis vom Sensibilisierungsverhalten dieser hochstickstofflegierten Stähle unerlässlich. Am stickstofflegierten Werkstoff 1.4456 (X8CrMnMoN18-18-2) wird das Sensibilisierungsverhalten am lösungsgeglühten Zustand durch die gezielte Variation der Warmauslagerungsparameter untersucht. Dabei wird im Temperaturbereich von 500 °C bis 900 °C die Glühdauer systematisch variiert, um zu ermitteln, wann Ausscheidungen im Gefüge auftreten und ob diese die Korrosionsbeständigkeit beeinträchtigen. Die verschiedenen Sensibilisierungszustände werden mit dem EPR Verfahren, der KorroPad-Prüfung und dem REM vergleichend untersucht. Zur besseren Interpretation der experimentellen Ergebnisse werden auch thermodynamische Berechnungen genutzt, welche die Existenzbereiche der verschiedenen Ausscheidungsphasen vorhersagen. Damit kann die Veränderung der Korrosionsbeständigkeit mit dem Auftreten der verschiedenen Phasen korreliert und die Anwendbarkeit der experimentellen Methoden für stickstofflegierte Stähle nachgewiesen werden. T2 - 16. Sommerkurs Werkstoffe und Fügen CY - Magdeburg, Germany DA - 08.09.2017 KW - Nichtrostender Stahl KW - Wärmebehandlung KW - Korrosion KW - Stickstoff KW - EPR KW - KorroPad KW - ThermoCalc PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 79 EP - 86 AN - OPUS4-41890 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Halle, T. A1 - Rosemann, Paul T1 - Alterungsverhalten vom kupferaushärtenden martensitisch nichtrostenden Stahl 1.4542 T2 - Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik N2 - Der nichtrostende, aushärtbare Stahl 1.4542 (X5CrNiCuNb16-4) wird aufgrund der guten mechanischen Eigenschaften und der hohen Korrosionsbeständigkeit in einer Vielzahl von technischen Anwendungen eingesetzt. Das Verhältnis zwischen den mechanischen Eigenschaften und der Korrosionsbeständigkeit wird durch eine gezielte Wärmebehandlung eingestellt. Härte und Festigkeit werden durch die Bildung von fein verteilten Kupferausscheidungen bei der Warmauslagerung erreicht. Werden dabei auch Chromkarbide gebildet, reduziert sich gleichzeitig die Korrosionsbeständigkeit. Um den Einfluss der Warmauslagerung auf die Eigenschaften zu charakterisieren, wurden verschiedene Alterungszustände erzeugt und vergleichend untersucht. Dabei wurde außerdem der Einfluss einer starken Kaltumformung auf das Alterungsverhalten und die Korrosionsbeständigkeit untersucht. Zur Charakterisierung der Veränderungen wurden die Gefüge im REM untersucht und der magnetisierbare Anteil sowie die Vickershärte ermittelt. Zum Nachweis korrosionsanfälliger Zustände wurde die elektrochemisch potentiodynamische Reaktivierung (EPR) genutzt. Die Ergebnisse zeigen, dass die Kaltverfestigung die Ausscheidungskinetik beschleunigt und die Korrosionsbeständigkeit durch die Warmauslagerung bei 600 °C deutlich reduziert wird. T2 - 16. Sommerkurs Werkstoffe und Fügen CY - Magdeburg, Germany DA - 08.09.2017 KW - Nichtrostender Stahl KW - Wärmebehandlung KW - Korrosion KW - EPR KW - Kaltverfestigung PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 87 EP - 94 AN - OPUS4-41891 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dieck, S. A1 - Ecke, M. A1 - Rosemann, Paul A1 - Halle, T. T1 - Verbesserung der Eigenschaften vom martensitischen, nichtrostenden Stahl X46Cr13 durch Q&P-Wärmebehandlung T2 - Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik N2 - Das innovative Wärmebehandlungskonzept des „Quenching and Partitioning“ (Q&P) ermöglicht die Herstellung hochfester, martensitischer Stähle mit hoher Verformbarkeit und Duktilität. Dabei wird Restaustenit im Prozessabschnitt des Partitionierens durch Kohlenstoffdiffusion stabilisiert. Dies ermöglicht die dehnungsinduzierte Phasenumwandlung von Austenit in Martensit und erhöht die Verformbarkeit, ohne dabei die Festigkeit zu reduzieren. Bisher wenig erforscht ist die Anwendung des Q&P-Prozesses bei korrosionsbeständigen Stählen. Die vorliegende Arbeit ergänzt erste Untersuchungen von YUANG und RAABE um wichtige werkstofftechnische Kennwerte sowie um die erreichbare Korrosionsbeständigkeit. Es konnte gezeigt werden, dass im Vergleich zur standardmäßig angewandten Wärmebehandlung die mechanischen und korrosiven Eigenschaften enorm durch den Q&P-Prozess gesteigert werden. T2 - Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik CY - Magdeburg, Germany DA - 08.09.2017 KW - Martensitischer nichtrostender Stahl KW - Wärmebehandlung KW - Q+P KW - Korrosion KW - KorroPad PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 95 EP - 104 AN - OPUS4-41892 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heyn, A. A1 - Rosemann, Paul A1 - Babutzka, Martin A1 - Bender, S. T1 - Elektrochemisches Rauschen von unlegiertem Stahl in wasserbasierten Bindemittel-Pigment-Gemischen T2 - Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik N2 - Die Entwicklung von Beschichtungen für den Korrosionsschutz ist ein aufwändiger Prozess mit einer Vielzahl von oftmals langwierigen Untersuchungen und Prüfungen der Schutzeigenschaften. Elektrochemische Methoden unterstützen die Entwicklungsprozesse in hohem Maße und helfen beim Verstehen von Wirk- und Schadensmechanismen. Sie werden meistens an fertig formulierten und applizierten Beschichtungssystemen vorgenommen. Es wird eine Untersuchungsmöglichkeit vorgestellt, bei der sich wasserbasierte Beschichtungsstoffe in unterschiedlichen Formulierungsvarianten bereits im flüssigen Zustand mit Hilfe des elektrochemischen Rauschens charakterisieren lassen. Damit ist es möglich, bereits in einer sehr frühen Phase der Formulierungsentwicklung die Auswahl von Bindemitteln, Pigmenten und weiteren Zusatzstoffen entscheidend zu unterstützen und effizienter zu gestalten. Am Beispiel der Entwicklung von zinkfreien Korrosionsschutzpigmenten für wasserbasierte Beschichtungen wird gezeigt, dass ein einzigartiger Einblick in die dynamischen Prozesse bei Kontakt eines Metalls mit der wässrigen Beschichtungsdispersion möglich ist und wie dies mit der Performance der Beschichtungen korreliert. T2 - 16. Sommerkurs Werkstoffe und Fügen CY - Magdeburg, Germany DA - 08.09.2017 KW - Beschichtung KW - Korrosion KW - Elektrochemisches Rauschen KW - Korrosionsschutzpigmente KW - Korrosionsschutz PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 139 EP - 148 AN - OPUS4-41893 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Thoralf A1 - Rosemann, Paul T1 - Influence of the post-weld surface treatment on the corrosion resistance of duplex stainless steel 1.4062 N2 - The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polishing or blasting depending on the requested corrosion resistance. Blasted surfaces are often used in the industrial practice due to the faster and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the results of different corrosion tests (KorroPad-testing and pitting potentials). T2 - Eurocorr 2017 CY - Prague, Czech Republic DA - 03.09.2017 KW - Duplexstahl KW - Korrosion KW - Nichtrostender Stahl KW - Oberflächenbearbeitung KW - Schweißen KW - Strahlen PY - 2017 AN - OPUS4-41915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -