TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromi-um carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hard-ening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - 20. Werkstofftechnischen Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Heat treatment KW - Stainless steel KW - Corrosion resistance KW - EPR KW - Corrosion testing PY - 2018 AN - OPUS4-44553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromi-um carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hard-ening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Corrosion resistance KW - Corrosion testing KW - EPR KW - Heat treatment KW - Stainless steel PY - 2018 SN - 978-3-00-058901-0 SN - 1439-1597 VL - 72 SP - 277 EP - 284 PB - Eigenverlag CY - Chemnitz AN - OPUS4-44558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kauss, N. A1 - Rosemann, Paul A1 - Halle, T. T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromium carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heattreated states. The results show that a work hardening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - WTK2018 CY - Chemnitz DA - 14.03.2018 KW - Corrosion KW - Corrosion resistance KW - Corrosion testing KW - EPR KW - Heat treatment KW - Stainless steel PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-452482 SN - 1757-899X SN - 1757-8981 VL - 373 SP - Article 012020, 1 EP - 9 PB - Institute of Physics CY - London AN - OPUS4-45248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Kauss, N. A1 - Halle, T. T1 - Application of the electrochemical potentiodynamic reactivation method on martensitic stainless steels N2 - The double loop electrochemical potentiodynamic reactivation (EPR) method is a standardised procedure for detecting and quantifying sensitisation on austenitic, ferritic and ferritic-austenitic stainless-steel grades. This sensitisation is caused by microstructural alternations, as the formation of chromium carbides, nitrides or sigma-phases, which generate local chromium depleted zones nearby. The latter strongly influence the corrosion resistance and the electrochemical response of a stainless steel during electrochemical potentiodynamic reactivation, providing important information on the degree of chromium depletion. In case of martensitic stainless steels, which are used for cutlery and surgical instruments, the heat treatment has a strong impact on the microstructure, the material properties and especially on the corrosion resistance. To study this interaction, the EPR method was modified for the application on martensitic stainless steels with about 13 wt.-% chromium. Different H2SO4 concentrations and EPR-parameters were tested and compared on two standard martensitic stainless-steel grades (AISI 420 A / X20Cr13 and AISI 420 C / X46Cr13) to define applicable parameters. Afterwards, these parameters were used to study the effect of austenitisation time and cooling rate on the corrosion resistance of both martensitic stainless steels. The response of both alloys was different due to the different carbon levels, which will be explained by microstructural investigations in detail. All results allow postulating a process window, in which chromium depletion is suppressed and an optimised corrosion resistance is guaranteed. Based on this research, the modified EPR-test is now used to control the heat treatment and its impact on the corrosion resistance of martensitic stainless steels in the cutlery industry. The EPR-test is thus an interesting alternative for manufacturers, processors, users and researchers to the time-consuming exposition test normally used to characterise the corrosion resistance of martensitic stainless steels. T2 - Electrochemical Methods in Corrosion Research 2018 CY - Cambridge, UK DA - 22.07.2018 KW - EPR KW - Corrosion resistance KW - Heat treatment KW - Stainless steels KW - Corrosion KW - Corrosion testing KW - Martensitic stainless steels PY - 2018 AN - OPUS4-45613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Heyn, A. A1 - Rosemann, Paul T1 - How to Detect Sensitivity on Aged Lean-Duplex Stainless Steel With Electrochemical Methods N2 - The influence of isothermal ageing on microstructure, sensitisation and pitting corrosion resistance of the lean duplex stainless steel (LDSS) X2CrNiN23-4 was investigated with various electrochemical methods. The aging at 600 °C (from 0.1 h up to 20 h) lead to the formation of precipitations at the ferrite-ferrite (α/α) and ferrite-austenite (α/γ) grain boundaries, inducing sensitisation due to chromium depletion. The degree of sensitisation was evaluated with the double loop electrochemical potentiokinetic reactivation method (DL-EPR) according to ASTM G108 and correlated with critical pitting potentials (Epit) as well as critical pitting temperature (CPT) measured in an electrolyte according to ASTM G48 using electrochemical noise. Up to an ageing time of 1 h, the sensitisation did rise significantly, stabilising at a nearly constant level with a slight drop at 20 h. This behaviour correlated perfectly with the potentiodynamically determined pitting potentials Epit and sensitisation. The CPT showed a higher sensitivity at short ageing times compared to the DL-EPR and Epit. Finally, the KorroPad method was applied to visualise the sensitisation induced reduction of pitting corrosion resistance. The “KorroPad” is an agar-based gel-electrolyte containing 0.1 mol/l sodium chloride (NaCl) and 0.1 mol/l potassium ferricyanide III (K3[Fe(CN)6]), invented at the Federal Institute of Materials Research and Testing in Berlin (Germany) to detect surfaces of stainless steel prone to pitting corrosion. The standard configuration of the KorroPad showed no differentiation for the various aging conditions. Increasing the concentration of both NaCl and potassium ferrocyanide III to 0.5 M shifts the detection limit of the KorroPad method to stainless steels with higher corrosion resistance, producing the same trends detected by standard electrochemical pitting corrosion values (Epit, CPT) and sensitisation (DL-EPR). By that, the KorroPad method was successfully adjusted to the lean-duplex stainless steel X2CrNiN23-4, enabling short-time testing to detect sensitization. T2 - Electrochemical Methods in Corrosion Research 2018 CY - Cambridge, UK DA - 22.07.2018 KW - Corrosion testing KW - Duplex stainless steels KW - Corrosion KW - KorroPad KW - Pitting corrosion KW - EPR KW - Electrochemical noise KW - Stainless steel PY - 2018 AN - OPUS4-45615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heyn, A. A1 - Rosemann, Paul A1 - Babutzka, Martin A1 - Bender, S. T1 - Electrochemical noise of unalloyed steel in mixtures of water-based binders and pigments N2 - The development of organic coatings for corrosion protection is an elaborate process with a multitude of often interminable investigations and tests of protection properties. Electrochemical methods support the processes of development to a great extent and help to understand mechanisms of action and failure. They are usually carried out on applied coating systems with a completed formulation. An examination possibility is presented in this publication that enables the characterization of waterbased coatings with different formulation variations in the liquid (aqueous) state with the aid of electrochemical noise technique. Thus, selection of binders, pigments, and other additives is supported essentially and made more efficient in a very early Phase of formulation development. The paper shows that a unique insight into the dynamic processes of a metal in contact with an aqueous coating dispersion is possible using the example of the development of zinc-free corrosion-inhibiting pigments for waterbased coatings. In addition, it is presented in which way the results correlate with the performance of applied coatings. KW - Organic coatings KW - Electrochemical noise KW - Corrosion KW - Corrosion protection KW - Corrosion protection pigments PY - 2017 U6 - https://doi.org/10.1002/maco.201709671 SN - 0947-5117 SN - 1521-4176 VL - 68 IS - 12 SP - 1295 EP - 1301 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-43319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Kauss, N. A1 - Müller, C. A1 - Halle, T. T1 - Heat treatment and corrosion resistance of cutlery N2 - Hardness and pitting corrosion resistance are the major quality criteria of cutlery. Both are achieved by the heat treatment (austenitization, quenching and tempering) of the normally used martensitic stainless steels. The established quality control method regarding the pitting corrosion resistance is an alternating immersion test in 1 % NaCl solution at 60 °C according to DIN EN ISO 8442. This standard test shows a high deviation, which limits any optimization of the heat treatment process. New approaches for corrosion testing of martensitic stainless-steels were developed and used in the last years to connect the weak pitting corrosion resistance of martensitic stainless-steels with the phenomenon of chromium depletion. The tempering temperatures used in the industrial heat treatment of cutlery are too low to explain the appearance of chromium depletion. For this reason, a systematic investigation of three heat treatment parameters (austenitization time, cooling speed and tempering temperature) were performed on the martensitic stainless-steels X50CrMoV15 (1.4116) to detect their contribution to chromium depletion. The electrochemical potentiodynamic reactivation (EPR), which is very sensitive to any change of the microstructure, was used to quantify the degree of chromium depletion. The KorroPad indicator-test was applied to correlate low pitting corrosion resistance to the presence of chromium depletion. The results of all investigations allow conclusions about the very small process window, which is necessary to achieve cutlery with high pitting corrosion resistance. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Corrosion KW - KorroPad KW - Stainless steel KW - Corrosion resistance KW - Heat treatment KW - EPR KW - Pitting corrosion KW - Martensitic stainless steels KW - REM PY - 2018 AN - OPUS4-45952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Kauss, N. T1 - Visualization of material-related susceptibility to pitting corrosion with the “KorroPad” indicator test N2 - The KorroPad indicator test was invented at the Federal Institute for Materials Research and Testing to detect stainless-steel surfaces susceptible to pitting corrosion. The KorroPad indicator test is thus an interesting alternative for manufacturers, processors, users and researchers to time consuming exposition experiments and complex electrochemical investigations, which are normally used to reveal surface-related processing errors resulting in reduced pitting corrosion resistance. Furthermore, the KorroPad indicator test can be used to visualize alloy- and microstructure-related factors causing susceptibility to pitting corrosion. The detection limit of the KorroPad indicator test was characterized in this work using reference alloys with different chromium content (5 % to 18 %). The alloy-specific detection limit was shifted successfully to higher chromium content by increasing the concentrations of NaCl and K3[Fe(CN)6]. The modified KorroPads can now be used to establish an alloy-specific quality control regarding the pitting corrosion resistance of different stainless steel grades. T2 - EUROCORR CY - Krakow, Poland DA - 09.09.2018 KW - Corrosion KW - KorroPad KW - Stainless steel KW - Corrosion resistance KW - Corrosion testing KW - Pitting corrosion PY - 2018 AN - OPUS4-45953 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Roßberg, S. A1 - Pensel, P. A1 - Halle, T. A1 - Burkert, A. T1 - Precipitation behavior and corrosion resistance of nickel-free, high-nitrogen austenitic stainless steels N2 - Nickel-free, nitrogen alloyed austenitic stainless-steels, with about 19 wt.-% Mn and 0,8 wt. % N, are an interesting alternative to classic CrNi austenitic stainless steels due to their superior mechanical properties (Rm > 900 MPa, A5 > 50 %, Av > 350 J) in the solution annealed condition. The formation of chromium-rich nitrides during suboptimal heat treatment, processing or application leads to an inhomogeneous distribution of alloying elements in the microstructure, which reduces the corrosion resistance. Consequently, an accurate knowledge of the sensitization behavior is indispensable for the use of nickel-free, high-nitrogen austenitic stainless steels. The relationship between artificial aging, phase formation and corrosion resistance was investigated on the alloys X8CrMnN18-19 (1.3815) and X8CrMnMoN18-19-2 (1.4456), both alloyed with 0,8 wt.-% Nitrogen, in the present work. The microstructural evolution was studied by LM and SEM while the corrosion resistance was characterized with the electrochemical potentiodynamic reactivation (EPR) and the KorroPad indicator-test. Both alloys showed increased corrosion susceptibility within critical aging parameters. Finally, a sensitization diagram was described successfully for both alloys showing the positive effect of molybdenum. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Corrosion KW - KorroPad KW - Stainless steel KW - Corrosion resistance KW - Heat treatment KW - ThermoCalc KW - Pitting corrosion KW - Nitrogen PY - 2018 AN - OPUS4-45954 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul A1 - Halle, T. T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion re-sistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromium carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hardening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion re-sistance due to chromium depletion. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Corrosion KW - Stainless steel KW - Corrosion resistance KW - EPR KW - Corrosion testing KW - Heat treatment KW - ThermoCalc KW - REM KW - Martensitic stainless steels PY - 2018 AN - OPUS4-45955 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -