TY - JOUR A1 - Dietrich, Paul A1 - Nietzold, Carolin A1 - Weise, Matthias A1 - Unger, Wolfgang A1 - Alnabulsi, Saad A1 - Moulder, John T1 - XPS depth profiling of an ultrathin bioorganic film with an argon gas cluster ion beam N2 - The growing interest in artificial bioorganic Interfaces as a platform for applications in emerging Areas as personalized medicine, clinical diagnostics, biosensing, biofilms, prevention of biofouling, and other fields of bioengineering is the origin of a need for in Detail multitechnique characterizations of such layers and interfaces. The in-depth analysis of biointerfaces is of special interest as the properties of functional bioorganic coatings can be dramatically affected by in-depth variations of composition. In worst cases, the functionality of a device produced using such coatings can be substantially reduced or even fully lost. KW - XPS KW - Ar gas cluster gun KW - Depth profiling KW - Bioorganic film PY - 2016 UR - http://scitation.aip.org/content/avs/journal/bip/11/2/10.1116/1.4948341 U6 - https://doi.org/10.1116/1.4948341 SN - 1934-8630 VL - 11 IS - 2 SP - 029603-1 EP - 029603-5 PB - American Vacuum Society CY - New York AN - OPUS4-36218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, Nele A1 - Dietrich, Paul M. A1 - Lippitz, Andreas A1 - Kulak, N. A1 - Unger, Wolfgang T1 - New azidation methods for the functionalization of silicon nitride and application in copper-catalyzed azide-alkyne cycloaddition (CuAAC) N2 - In this study, a new direct functionalization method of silicon nitride (Si3N4) using azidation and click chemistry is presented. First, amino groups (NHx) were created on a Si3N4 substrate by fluoride etching. These NHx-terminated Si3N4 surfaces were analyzed by chemical derivatization X-ray photoelectron spectroscopy (CD-XPS) with 4-trifluoromethylbenzaldehyde (TFBA) and a derivatization yield of 20% was concluded. In the second step freshly prepared NHx surfaces were transformed into azides which were used immediately in a click reaction with halogenated alkynes. The presented combination of amination, azidation and click reaction is a promising alternative for common silane-based Si3N4 functionalization methods. T2 - 16th European Conference on Applications of Surface and Interface Analysis CY - Granada, Spain DA - 28.09.2015 KW - XPS KW - Azidation KW - Click chemistry KW - Silicon nitride KW - Chemical derivatization PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/sia.5950/full U6 - https://doi.org/10.1002/sia.5950 VL - 48 SP - 621 EP - 625 PB - John Wiley & Sons, Ltd AN - OPUS4-36841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belsey, N. A. A1 - Cant, D. J. H. A1 - Minelli, C. A1 - Araujo, J. R. A1 - Bock, B. A1 - Brüner, P. A1 - Castner, D. G. A1 - Ceccone, G. A1 - Counsell, J. D. P. A1 - Dietrich, Paul M. A1 - Engelhardt, M. H. A1 - Fearn, S. A1 - Galhardo, C. E. A1 - Kalbe, H. A1 - Kim, J. W. A1 - Lartundo-Rojas, L. A1 - Luftman, H. S. A1 - Nunney, T. S. A1 - Pseiner, J. A1 - Smith, E. F. A1 - Spampinato, V. A1 - Sturm, J. M. A1 - Thomas, A. G. A1 - Treacy, J. P. W. A1 - Veith, L. A1 - Wagstaffe, M. A1 - Wang, H. A1 - Wang, M. A1 - Wang, Y.-C. A1 - Werner, W. A1 - Yang, L. A1 - Shard, A. G. T1 - Versailles Project on Advanced Materials and Standards Interlaboratory Study on Measuring the Thickness and Chemistry of Nanoparticle Coatings Using XPS and LEIS N2 - We report the results of a Versailles Project on Advanced Materials and Standards (VAMAS) interlaboratory study on the measurement of the shell thickness and chemistry of nanoparticle coatings. Peptide-coated gold particles were supplied to laboratories in two forms: a colloidal suspension in pure water and particles dried onto a silicon wafer. Participants prepared and analyzed these samples using either X-ray photoelectron spectroscopy (XPS) or low energy ion scattering (LEIS). Careful data analysis revealed some significant sources of discrepancy, particularly for XPS. Degradation during transportation, storage, or sample preparation resulted in a variability in thickness of 53%. The calculation method chosen by XPS participants contributed a variability of 67%. However, variability of 12% was achieved for the samples deposited using a single method and by choosing photoelectron peaks that were not adversely affected by instrumental transmission effects. The study identified a need for more consistency in instrumental transmission functions and relative sensitivity factors since this contributed a variability of 33%. The results from the LEIS participants were more consistent, with variability of less than 10% in thickness, and this is mostly due to a common method of data analysis. The calculation was performed using a model developed for uniform, flat films, and some participants employed a correction factor to account for the sample geometry, which appears warranted based upon a simulation of LEIS data from one of the participants and comparison to the XPS results. KW - VAMAS KW - Interlaboratory Study KW - Nanoparticle coating KW - XPS KW - LEIS KW - shell thicknss and chemistry PY - 2016 UR - http://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.6b06713 U6 - https://doi.org/10.1021/acs.jpcc.6b06713 IS - 120 SP - 24070 EP - 24079 PB - ACS Publications AN - OPUS4-38428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nietzold, Carolin A1 - Dietrich, Paul A1 - Lippitz, Andreas A1 - Panne, Ulrich A1 - Unger, Wolfgang T1 - Cyclodextrin – ferrocene host – guest complexes on silicon oxide surfaces N2 - Research on carbohydrate based interactions with proteins, nucleic acids or antibodies has gained increased interest in the last years especially in clinical diagnosis or drug development. The efficiency of diagnostic interfaces depends upon the number of probe molecules, e.g. carbohydrates. The control of surface parameters as density and distribution of immobilized carbohydrates is essential for a reliable interaction with protein analytes. A controlled production of biomolecular interfaces can be reached by a stepwise quality control during buildup of these biointerfaces. Here, ß-amino-cyclodextrin molecules were attached to amine-reactive silicon oxide surfaces via click chemistry to construct a model biosensor surface. The amount of surface bound carbohydrates was determined indirectly after chemical derivatization with 4-(trifluoromethyl)-benzylamine (TFMBA). Moreover, these surfaces were used to form host-guest complexes of ferrocene (guest) and β-cyclodextrin (host) moieties to mimic the target binding (sensing) of the model biosensor. Surface chemical analysis of all steps during biosensor construction was performed using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). Our approach widens the possibilities to generate switchable surfaces based on ß-Cyclodextrin surfaces for biosensor applications. KW - ß-amino-cyclodextrin KW - Ferrocene KW - Guest complexe KW - XPS KW - NEXAFS PY - 2016 U6 - https://doi.org/10.1002/sia.5958 SN - 0142-2421 SN - 1096-9918 VL - 48 IS - 7 SP - 606 EP - 610 PB - Wiley AN - OPUS4-36856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -