TY - JOUR A1 - Häusler, Ines A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Dietrich, Paul A1 - Unger, Wolfgang A1 - Österle, Werner T1 - Comprehensive characterization of ball-milled powders simulating a tribofilm system JF - Materials characterization N2 - A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ball milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS2 and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. KW - Tribofilm model system KW - Ball milling KW - X-ray powder diffraction KW - Transmission electron microscopy PY - 2016 DO - https://doi.org/10.1016/j.matchar.2015.11.024 SN - 1044-5803 SN - 1873-4189 VL - 111 SP - 183 EP - 192 PB - Elsevier CY - New York, NY AN - OPUS4-35051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nietzold, Carolin A1 - Dietrich, Paul A1 - Lippitz, Andreas A1 - Panne, Ulrich A1 - Unger, Wolfgang T1 - Cyclodextrin – ferrocene host – guest complexes on silicon oxide surfaces JF - Surface and Interface Analysis N2 - Research on carbohydrate based interactions with proteins, nucleic acids or antibodies has gained increased interest in the last years especially in clinical diagnosis or drug development. The efficiency of diagnostic interfaces depends upon the number of probe molecules, e.g. carbohydrates. The control of surface parameters as density and distribution of immobilized carbohydrates is essential for a reliable interaction with protein analytes. A controlled production of biomolecular interfaces can be reached by a stepwise quality control during buildup of these biointerfaces. Here, ß-amino-cyclodextrin molecules were attached to amine-reactive silicon oxide surfaces via click chemistry to construct a model biosensor surface. The amount of surface bound carbohydrates was determined indirectly after chemical derivatization with 4-(trifluoromethyl)-benzylamine (TFMBA). Moreover, these surfaces were used to form host-guest complexes of ferrocene (guest) and β-cyclodextrin (host) moieties to mimic the target binding (sensing) of the model biosensor. Surface chemical analysis of all steps during biosensor construction was performed using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). Our approach widens the possibilities to generate switchable surfaces based on ß-Cyclodextrin surfaces for biosensor applications. KW - ß-amino-cyclodextrin KW - Ferrocene KW - Guest complexe KW - XPS KW - NEXAFS PY - 2016 DO - https://doi.org/10.1002/sia.5958 SN - 0142-2421 SN - 1096-9918 VL - 48 IS - 7 SP - 606 EP - 610 PB - Wiley AN - OPUS4-36856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Tobias A1 - Dietrich, Paul A1 - Unger, Wolfgang A1 - Rurack, Knut T1 - Multimode surface functional group determination: combining steady-state and time-resolved fluorescence with X‑ray photoelectron spectroscopy and absorption measurements for absolute quantification JF - Analytical Chemistry N2 - The quantitative determination of surface functional groups is approached in a straightforward laboratory-based method with high reliability. The application of a multimode BODIPY-type fluorescence, photometry, and X-ray photoelectron spectroscopy (XPS) label allows estimation of the labeling ratio, i.e., the ratio of functional groups carrying a label after reaction, from the elemental ratios of nitrogen and fluorine. The amount of label on the surface is quantified with UV/vis spectrophotometry based on the molar absorption coefficient as molecular property. The investigated surfaces with varying density are prepared by codeposition of 3-(aminopropyl) triethoxysilane (APTES) and cyanoethyltriethoxysilane (CETES) from vapor. These surfaces show high functional group densities that result in significant fluorescence quenching of surface-bound labels. Since alternative quantification of the label on the surface is available through XPS and photometry, a novel method to quantitatively account for fluorescence quenching based on fluorescence lifetime (τ) measurements is shown. Due to the complex distribution of τ on high-density surfaces, the stretched exponential (or Kohlrausch) function is required to determine representative mean lifetimes. The approach is extended to a commercial Rhodamine B isothiocyanate (RITC) label, clearly revealing the problems that arise from such charged labels used in conjunction with silane surfaces. KW - surface group quantification KW - fluorescence spectroscopy KW - absorption spectroscopy KW - X-ray photoelectron spectroscopy KW - dyes PY - 2016 DO - https://doi.org/DOI: 10.1021/acs.analchem.5b03468 SN - 0003-2700 VL - 88 IS - 2 SP - 1210 EP - 1217 PB - American Chemical Society CY - Washington, DC AN - OPUS4-35832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Glamsch, Stephan A1 - Ehlert, Christopher A1 - Lippitz, Andreas A1 - Kulak, N. A1 - Unger, Wolfgang T1 - Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon JF - Applied surface science N2 - The analysis of chemical and elemental in-depth variations in ultra-thin organic layers with thicknesses below 5 nm is very challenging. Energy- and angle-resolved XPS (ER/AR-XPS) opens up the possibility for non-destructive chemical ultra-shallow depth profiling of the outermost surface layer of ultra-thin organic films due to its exceptional surface sensitivity. For common organic materials a reliable chemical in-depth analysis with a lower limit of the XPS information depth z95 of about 1 nm can be performed. As a proof-of-principle example with relevance for industrial applications the ER/AR-XPS analysis of different organic monolayers made of amino- or benzamidosilane molecules on silicon oxide surfaces is presented. It is demonstrated how to use the Si 2p core-level region to non-destructively depth-profile the organic (silane monolayer) – inorganic (SiO2/Si) interface and how to quantify Si species, ranging from elemental silicon over native silicon oxide to the silane itself. The main advantage of the applied ER/AR-XPS method is the improved specification of organic from inorganic silicon components in Si 2p core-level spectra with exceptional low uncertainties compared to conventional laboratory XPS. KW - Synchrotron radiation XPS KW - Depth profiling KW - Silanes KW - Monolayer KW - Amines KW - Amides PY - 2016 DO - https://doi.org/10.1016/j.apsusc.2015.12.052 SN - 0169-4332 SN - 1873-5584 VL - 363 SP - 406 EP - 411 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Nietzold, Carolin A1 - Weise, Matthias A1 - Unger, Wolfgang A1 - Alnabulsi, Saad A1 - Moulder, John T1 - XPS depth profiling of an ultrathin bioorganic film with an argon gas cluster ion beam JF - Biointerphases N2 - The growing interest in artificial bioorganic Interfaces as a platform for applications in emerging Areas as personalized medicine, clinical diagnostics, biosensing, biofilms, prevention of biofouling, and other fields of bioengineering is the origin of a need for in Detail multitechnique characterizations of such layers and interfaces. The in-depth analysis of biointerfaces is of special interest as the properties of functional bioorganic coatings can be dramatically affected by in-depth variations of composition. In worst cases, the functionality of a device produced using such coatings can be substantially reduced or even fully lost. KW - XPS KW - Ar gas cluster gun KW - Depth profiling KW - Bioorganic film PY - 2016 UR - http://scitation.aip.org/content/avs/journal/bip/11/2/10.1116/1.4948341 DO - https://doi.org/10.1116/1.4948341 SN - 1934-8630 VL - 11 IS - 2 SP - 029603-1 EP - 029603-5 PB - American Vacuum Society CY - New York AN - OPUS4-36218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -