TY - JOUR A1 - Dietrich, Paul A1 - Horlacher, T. A1 - Girard-Lauriault, Pierre-Luc A1 - Gross, Thomas A1 - Lippitz, Andreas A1 - Min, Hyegeun A1 - Wirth, Thomas A1 - Castelli, R. A1 - Seeberger, P. A1 - Unger, Wolfgang T1 - Multimethod chemical characterization of carbohydrate-functionalized surfaces N2 - A combined XPS, NEXAFS, and ToF-SIMS chemical surface characterization of carbohydrate-functionalized gold and glass surfaces is presented. Spot shape and chemical composition across a spot surface are provided by surface-sensitive methods as ToF-SIMS and XPS, used in their imaging modes. Moreover, the feasibility of this multimethod approach to control relevant production steps of a carbohydrate microarray prototype is demonstrated. KW - Carbohydrates KW - Microarrays KW - Self-assembled monolayers KW - XPS KW - NEXAFS KW - ToF-SIMS PY - 2011 U6 - https://doi.org/10.1080/07328303.2011.615181 SN - 0732-8303 VL - 30 IS - 4-6 SP - 361 EP - 372 PB - Taylor & Francis CY - London [u.a.] AN - OPUS4-24874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Horlacher, T. A1 - Girard-Lauriault, Pierre-Luc A1 - Gross, Thomas A1 - Lippitz, Andreas A1 - Min, Hyegeun A1 - Wirth, Thomas A1 - Castelli, R. A1 - Seeberger, P.H. A1 - Unger, Wolfgang T1 - Adlayers of dimannoside thiols on gold: surface chemical analysis N2 - Carbohydrate films on gold based on dimannoside thiols (DMT) were prepared, and a complementary surface chemical analysis was performed in detail by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), near-edge X-ray absorption fine structure (NEXAFS), FT-IR, and contact angle measurements in order to verify formation of ω-carbohydrate-functionalized alkylthiol films. XPS (C 1s, O 1s, and S 2p) reveals information on carbohydrate specific alkoxy (C–O) and acetal moieties (O–C–O) as well as thiolate species attached to gold. Angle-resolved synchrotron XPS was used for chemical speciation at ultimate surface sensitivity. Angle-resolved XPS analysis suggests the presence of an excess top layer composed of unbound sulfur components combined with alkyl moieties. Further support for DMT attachment on Au is given by ToF-SIMS and FT-IR analysis. Carbon and oxygen K-edge NEXAFS spectra were interpreted by applying the building block model supported by comparison to data of 1-undecanethiol, poly(vinyl alcohol), and polyoxymethylene. No linear dichroism effect was observed in the angle-resolved C K-edge NEXAFS. KW - Carbohydrates KW - Self-assembled monolayer KW - XPS KW - NEXAFS KW - ToF-SIMS KW - Surface chemical analysis PY - 2011 U6 - https://doi.org/10.1021/la104038q SN - 0743-7463 SN - 1520-5827 VL - 27 IS - 8 SP - 4808 EP - 4815 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Graf, Nora A1 - Gross, Thomas A1 - Lippitz, Andreas A1 - Schüpbach, B. A1 - Bashir, A. A1 - Wöll, Ch. A1 - Terfort, A. A1 - Unger, Wolfgang T1 - Self-assembled monolayers of aromatic omega-aminothiols on gold: surface chemistry and reactivity N2 - Amino-terminated self-assembled monolayers on gold substrates were studied by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) measurements, and atomic force microscopy (AFM). Two different ω-amino-4,4'-terphenyl substituted alkanethiols of the general structure H2N-(C6H4)3-(CH2)n-SH (ATPn) were used: 2-(4''-amino-1,1':4',1''-terphenyl-4-yl)ethane-1-thiol (n = 2, ATP2) and 3-(4''-amino-1,1':4',1''-terphenyl-4-yl)propane-1-thiol (n = 3, ATP3). Moreover, the addressability of amino groups within the films was investigated by chemical derivatization of ATPn SAMs with 3,5-bis(trifluoromethyl)phenyl isothiocyanate (ITC) forming fluorinated thiourea ATPn-F films. Evaluation of high-resolution C 1s and N 1s XPS data revealed successful derivatization of at least 50% of surface amino species. Furthermore, it could be demonstrated by angle-resolved NEXAFS spectroscopy that chemical derivatization with ITC has no noticeable influence on the preferential upright orientation of the molecules in the SAMs. KW - Gold KW - Self-assembled monolayer KW - Thiols KW - Amino surfaces KW - XPS KW - NEXAFS PY - 2010 U6 - https://doi.org/10.1021/la903293b SN - 0743-7463 SN - 1520-5827 VL - 26 IS - 6 SP - 3949 EP - 3954 PB - American Chemical Society CY - Washington, DC AN - OPUS4-20990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Min, Hyegeun A1 - Girard-Lauriault, Pierre-Luc A1 - Gross, Thomas A1 - Lippitz, Andreas A1 - Dietrich, Paul A1 - Unger, Wolfgang T1 - Ambient-ageing processes in amine self-assembled monolayers on microarray slides as studied by ToF-SIMS with principal component analysis, XPS, and NEXAFS spectroscopy N2 - We investigated the ageing of amine-terminated self-assembled monolayers (amine-SAMs) on different silica substrates due to exposure to different ambient gases, pressures, and/or temperatures using time-of-flight secondary ion mass spectrometry (ToF-SIMS) with principal component analysis and complementary methods of surface analysis as X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS). The goal of this study is to examine the durability of primary amine groups of amine-SAMs stored in a user laboratory prior to being used as supports for biomolecule immobilization and other applications. We prepared amine-SAMs on the native oxides of silicon wafers and glass slides using 3- aminopropyl triethoxysilane, by using optimized conditions such as anhydrous organic solvent and reaction time scale of hours to avoid multilayer growth. Selected commercial amine-SAM slides have been investigated, too. When the amine-SAMs are exposed to air, oxygen incorporation occurs, followed by formation of amide groups. The formation of oxygen species due to ageing was proved by ToFSIMS, XPS, and NEXAFS findings such as CNO- secondary ion emission at m/z 42, observation of the N 1s HNC=O component peak at 400.2–400.3 eV in XPS, and, last but not least, by formation of a π*(HNC=O) resonance at 401 eV in the N K-edge X-ray absorption spectrum. It is concluded that the used multi-method approach comprising complementary ToF-SIMS, XPS, and NEXAFS analyses is well suited for a thorough study of chemical aspects of ageing phenomena of amine-SAM surfaces. KW - Amine-SAM KW - Ageing process KW - ToF-SIMS KW - NEXAFS KW - XPS PY - 2012 U6 - https://doi.org/10.1007/s00216-012-5862-5 SN - 1618-2642 SN - 1618-2650 VL - 403 IS - 2 SP - 613 EP - 623 PB - Springer CY - Berlin AN - OPUS4-25829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nietzold, Carolin A1 - Dietrich, Paul A1 - Lippitz, Andreas A1 - Panne, Ulrich A1 - Unger, Wolfgang T1 - Cyclodextrin – ferrocene host – guest complexes on silicon oxide surfaces N2 - Research on carbohydrate based interactions with proteins, nucleic acids or antibodies has gained increased interest in the last years especially in clinical diagnosis or drug development. The efficiency of diagnostic interfaces depends upon the number of probe molecules, e.g. carbohydrates. The control of surface parameters as density and distribution of immobilized carbohydrates is essential for a reliable interaction with protein analytes. A controlled production of biomolecular interfaces can be reached by a stepwise quality control during buildup of these biointerfaces. Here, ß-amino-cyclodextrin molecules were attached to amine-reactive silicon oxide surfaces via click chemistry to construct a model biosensor surface. The amount of surface bound carbohydrates was determined indirectly after chemical derivatization with 4-(trifluoromethyl)-benzylamine (TFMBA). Moreover, these surfaces were used to form host-guest complexes of ferrocene (guest) and β-cyclodextrin (host) moieties to mimic the target binding (sensing) of the model biosensor. Surface chemical analysis of all steps during biosensor construction was performed using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). Our approach widens the possibilities to generate switchable surfaces based on ß-Cyclodextrin surfaces for biosensor applications. KW - ß-amino-cyclodextrin KW - Ferrocene KW - Guest complexe KW - XPS KW - NEXAFS PY - 2016 U6 - https://doi.org/10.1002/sia.5958 SN - 0142-2421 SN - 1096-9918 VL - 48 IS - 7 SP - 606 EP - 610 PB - Wiley AN - OPUS4-36856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Hennig, Andreas A1 - Holzweber, Markus A1 - Thiele, T. A1 - Borcherding, H. A1 - Lippitz, Andreas A1 - Schedler, U. A1 - Resch-Genger, Ute A1 - Unger, Wolfgang T1 - Surface analytical study of poly(acrylic acid)-grafted microparticles (beads): characterization, chemical derivatization, and quantification of surface carboxyl groups N2 - We report a surface analytical study of poly(methyl methacrylate) (PMMA) microparticles (beads) with a grafted shell of poly(acrylic acid) (PAA) with thicknesses up to 4 nm using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy. These polymer microparticles were analyzed before and after reaction of the surface carboxyl (CO2H) groups with 2,2,2-trifluoroethylamine (TFEA) to gain a better understanding of methods with use of covalently bound probe molecules for surface group analysis. The results obtained with chemical derivatization XPS using TFEA are discussed in terms of surface quantification of reactive CO2H groups on these PAA-coated microparticles. A labeling yield of about 50% was found for TFEA-derivatized particles with amounts of surface-grafted CO2H groups of 99 µmol/g or more, which is consistent with predicted reaction yields for homogeneously dispersed PAA hydrogels. KW - Polymer microparticles KW - Poly(acrylic acid)-grafted microparticles KW - Beads KW - XPS KW - SEM KW - NEXAFS KW - Surface analysis KW - Fluorine labeling PY - 2014 U6 - https://doi.org/10.1021/jp505519g SN - 1932-7447 SN - 1089-5639 VL - 118 IS - 35 SP - 20393 EP - 20404 PB - Soc. CY - Washington, DC AN - OPUS4-31326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Dietrich, Paul A1 - Graf, Nora A1 - Gross, Thomas A1 - Lippitz, Andreas A1 - Schüpbach, B. A1 - Terfort, A. A1 - Unger, Wolfgang T1 - Characterization of self-assembled monolayers of terphenylthiols with amine head groups KW - Terphenylthiolate SAMs KW - Gold KW - Microarray KW - NEXAFS PY - 2008 SP - 195 EP - 197 AN - OPUS4-22909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Graf, Nora A1 - Gross, Thomas A1 - Lippitz, Andreas A1 - Krakert, S. A1 - Schüpbach, B. A1 - Terfort, A. A1 - Unger, Wolfgang T1 - Amine species on self-assembled monolayers of omega-aminothiolates on gold as identified by XPS and NEXAFS spectroscopy N2 - Functionalised surfaces are of interest in many fields, e.g. in biomedicine, materials science and molecular electronics. In this study a series of self-assembled aliphatic and aromatic monolayers on gold substrates with terminal amino groups was investigated. Four different thiol molecules were used: aliphatic 11-aminoundecane-1-thiol (AUDT), aromatic 4-aminobenzenethiol (ABT) and aromatic ω-amino thiols with an alkyl spacer as 4-aminophenylbutane-1-thiol (APBT) and 3-(4''-amino-1,1':4',1''-terphenyl-4-yl)propane-1-thiol (ATPT). Evaluation of N 1s XPS data revealed that on the aromatic self-assembled monolayers (SAMs) amino groups exist preferentially as primary amines, whereas on the aliphatic SAM protonated and/or hydrogen-bonded amines are the major species. This result is crosschecked by N K edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy and can be rationalised by the different basicity of aliphatic and aromatic amines. KW - Self-assembled monolayer KW - Amines KW - XPS KW - NEXAFS KW - Surface analysis PY - 2010 U6 - https://doi.org/10.1002/sia.3224 SN - 0142-2421 SN - 1096-9918 VL - 42 SP - 1184 EP - 1187 PB - Wiley CY - Chichester AN - OPUS4-21498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grötzsch, D. A1 - Streeck, C. A1 - Nietzold, Carolin A1 - Malzer, W. A1 - Mantouvalou, I. A1 - Nutsch, A. A1 - Dietrich, Paul A1 - Unger, Wolfgang A1 - Beckhoff, B. A1 - Kanngießer, B. T1 - A sealable ultrathin window sample cell for the study of liquids by means of soft X-ray spectroscopy N2 - A new sample cell concept for the analysis of liquids or solid-liquid interfaces using soft X-ray spectroscopy is presented, which enables the complete sealing of the cell as well as the Transport into vacuum via, for example, a load-lock system. The cell uses pressure monitoring and active as well as passive pressure regulation systems, thereby facilitating the full control over the pressure during filling, sealing, evacuation, and measurement. The cell design and sample preparation as well as the crucial sealing procedure are explained in detail. As a first proof-of-principle experiment, successful nitrogen K-edge fluorescence yield near-edge X-ray absorption fine structure experiments of a biomolecular solution are presented. For this purpose, it is shown that the careful evaluation of all involved parameters, such as window type or photon flux, is desirable for optimizing the experimental result. KW - X-ray spectroscopy KW - Analysis of liquids KW - Wet cell KW - Concanavalin A KW - NEXAFS PY - 2017 U6 - https://doi.org/10.1063/1.5006122 SN - 0034-6748 SN - 1089-7623 VL - 88 IS - 12 SP - 123112-1 EP - 123112-7 PB - American Institute of Physics AN - OPUS4-43611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nietzold, Carolin A1 - Dietrich, Paul A1 - Holzweber, M. A1 - Lippitz, Andreas A1 - Kamalakumar, A. A1 - Blanchard, V. A1 - Ivanov-Pankov, S. A1 - Weigel, W. A1 - Panne, Ulrich A1 - Unger, Wolfgang T1 - Surface chemical characterization of model glycan surfaces and shelf life studies of glycan microarrays using XPS, NEXAFS spectroscopy, ToF-SIMS and fluorescence scanning N2 - Biomedical applications, including functional biomaterials, carbohydrate-arrays, and glycan-based biosensors. The chemistry of glycan immobilization plays an essential role in the bioavailability and function of surface bound carbohydrate moieties. For biomedical applications the stability over time (shelf life) of glycan arrays is a crucial factor. Herein we report on approaches for surface and interface characterization relevant to the needs of production of glycan microarrays which were tested using model carbohydrate surfaces. For detailed characterization of glycan model surfaces we used a combination of X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and ToF SIMS which are complementary techniques of surface chemical analysis. Links to fluorescence spectroscopy often used for characterization in the microarray community were established as well. In detail, amine-reactive silicon oxide and glass surfaces were used for anchoring oligosaccharides with an amino linker. The amount of surface bound carbohydrates was estimated by X-ray photoelectron spectroscopy (XPS). Glycan immobilization was investigated using lectins, which are glycan-binding molecules. A shelf life study of model glycan microarrays on epoxy-coated glass surfaces was done over a period of 160 days under different storage conditions utilizing fluorescence, ToF-SIMS and XPS analysis. It was shown that glycan activity of the models used can be maintained at least for half a year of storage at 4 °C. KW - Glycan microarray KW - XPS KW - NEXAFS KW - ToF-SIMS KW - Fluorescence PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0169433218320300?via%3Dihub U6 - https://doi.org/10.1016/j.apsusc.2018.07.133 SN - 0169-4332 SN - 1873-5584 VL - 459 SP - 860 EP - 873 PB - Elsevier B.V. AN - OPUS4-46212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -