TY - JOUR A1 - Johann, Sergej A1 - Baensch, Franziska A1 - Sturm, Patrick A1 - Tiebe, Carlo A1 - Pötschke, Samuel A1 - Lay, Vera ED - Holl, H. T1 - HF RFID-based measurement comparison for method optimization in M2 concrete and alkali-activated mortars N2 - Monitoring of repositories for radioactive waste requires techniques which can be applied long-term under harsh conditions. In this work, the reliability and suitability of materials and a capacitive sensor for measuring relative humidity are investigated, which are to be embedded in the special concrete components for the closure structures of underground repository. Preliminary tests with accelerated aging of the materials used, validation of the sensors under difficult conditions, investigations of the surfaces after aging by pH 14 solution, defined exposure of the sensors in a climatic chamber and the microscope images are discussed. The results will be used for further development and optimization of the RFID based sensor systems which can be applied to monitor the condition of different building structures without cabling. T2 - 37th Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Linz, Austria DA - 21.09.2021 KW - Alkali-activated mortars KW - Passive sensor interface KW - RFID KW - Structural health monitoring KW - Smart structures PY - 2022 DO - https://doi.org/10.1016/j.matpr.2022.03.465 SN - 2214-7853 VL - 62 IS - 5 SP - 2571 EP - 2576 PB - Elsevier CY - Amsterdam AN - OPUS4-54697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Law, D. W. A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Gunasekara, C. ED - Valente, I. B. ED - Ventura Gouveia, A. ED - Dias, S. S. T1 - Effect of Curing Temperature on the Alkali Activation of German Brown Coal Fly Ash N2 - Due to environmental concerns regarding the use of Portland cement as the principal binder material in concrete and mortar it is imperative to identify alternative materials that could reduce the carbon footprint of the construction industry. One alternative to address these issues is the use of alkali activated materials, in particular, when based on waste streams that currently have no or only limited industrial application. This paper reports a preliminary study into the synthesis of geopolymer mortar utilizing Brown Coal Fly Ash. The ash had a CaO content of ~39%, indicating that synthesis at ambient or low temperature may be feasible. The paper reports initial trials on the effect of curing temperature, ambient to 120 °C, on the mechanical properties of the mortars produced. The results showed that ambient cured mortar achieved a compressive strength of 6.5 MPa at 3 days. A curing temperature of 60 °C gave the optimum results with a compressive strength of almost 20 MPa and a flexural strength of 3.5 MPa obtained. T2 - 3rd RILEM Spring Convention and Conference (RSCC 2020) CY - Guimarães, Portugal DA - 10.03.2020 KW - Alkali-activated materials KW - Brown Coal Fly Ash KW - Lignite Coal PY - 2021 SN - 978-3-030-76550-7 SN - 978-3-030-76551-4 DO - https://doi.org/10.1007/978-3-030-76551-4_7 SP - 69 EP - 77 PB - Springer CY - Cham AN - OPUS4-53072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Henning, Ricky A1 - Sturm, Patrick A1 - Kühne, Hans-Carsten A1 - Keßler, S. A1 - Gluth, Gregor T1 - Untersuchungen zur Wärmeentwicklung von hybriden Zementen N2 - Die Hauptfunktion von Verschlussbauwerken für End- und Zwischenlager von radioaktiven Abfällen besteht in der Erhaltung der geologischen Barriere. Vor allem soll ein potenzieller Stofftransport durch eine möglichst geringe Permeabilität des Bauwerks verhindert bzw. auf vernachlässigbare Werte herabgesetzt werden. Die in-situ-Permeabilität des Verschlussbauwerks steht dabei in direktem Zusammenhang mit dessen Poren- und Makrostruktur, welche bei Bauwerken auf Basis von Beton insbesondere durch Schwind-verformungen und durch thermisch induzierte Rissbildung infolge der Reaktionswärmeentwicklung des Bindemittels gestört werden kann. Die Betone müssen daher neben einer hohen chemischen Langzeitstabilität auch eine geringe bzw. langsame Wärmeentwicklung während der Erhärtungsreaktionen aufweisen. Als hybride Zemente werden Mischungen aus Portlandzement, Betonzusatzstoffen und einem alkalischen Aktivator bezeichnet. Dabei können u. a. Alkalisulfate, Alkalicarbonate, Alkalisilicate und Alkalihydroxide als Aktivatoren zum Einsatz kommen. Aufgrund ihrer hohen chemischen Stabilität im salinaren Milieu sind Betone aus solchen Zementen potenziell besonders gut als Verfüllmaterial für End- und Zwischenlager im Steinsalz geeignet. In der vorliegenden Studie wurden daher hybride Zemente hinsichtlich ihrer Wärmeentwicklung in einem isothermen Kalorimeter sowie hinsichtlich Phasenbestand und Festigkeiten untersucht. Hybride Zementleime wurden auf Basis von Portlandklinker, Hüttensandmehl, Flugasche und Natriumsulfat hergestellt und die Zusammensetzungen systematisch variiert, um den Einfluss der Komponenten auf Wärmeentwicklung, Phasenbestand und mechanische Eigenschaften der Leime zu untersuchen; zusätzlich wurden zu Vergleichszwecken ein Zementleim auf Basis der Betonrezeptur M2 sowie eine alkalisch aktivierte Flugasche untersucht. T2 - 2. Tage der Standortauswahl CY - Online meeting DA - 11.02.2021 KW - Hybride Zemente KW - Hydratationswärme KW - Kalorimetrie PY - 2021 SP - 137 EP - 139 AN - OPUS4-52216 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Henning, Ricky A1 - Sturm, Patrick A1 - Geddes, D.A. A1 - Keßler, S. A1 - Walkley, B. A1 - Gluth, Gregor T1 - The influence of curing temperature on the strength and phase assemblage of hybrid cements based on GGBFS/FA blends N2 - Hybrid cements are composites made of Portland cement or Portland clinker and one or more supplementary cementitious materials like slag, fly ash or metakaolin, activated with an alkali salt. To date, their hydration mechanism and the phase formation at various temperatures is insufficiently understood, partly due to the large variability of the raw materials used. In the present study, three hybrid cements based on ground granulated blast furnace slag, fly ash, Portland clinker and sodium sulfate, and an alkali-activated slag/fly ash blend were cured at 10 and 21.5°C, and subsequently analyzed by XRD, 27Al MAS NMR, and TGA. The compressive strength of the hybrid cements was higher by up to 27% after 91-day curing at 10°C, compared to curing at 21.5°C. The experimental results as well as thermodynamic modeling indicate that the differences in compressive strength were related to a different phase assemblage, mainly differing amounts of strätlingite and C-N-A-S-H, and the associated differences of the volume of hydration products. While the strätlingite was amorphous to X-rays, it could be identified by 27Al MAS NMR spectroscopy, TGA and thermodynamic modeling. The microstructural properties of the hybrid cements and the alkali-activated slag/fly ash blend as well as the compatibility between thermodynamic modeling results and experimental data as a function of curing temperature and time are discussed. KW - Hybrid cements KW - Strätlingite KW - Thermodynamic modelling KW - Hydration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557767 DO - https://doi.org/10.3389/fmats.2022.982568 SN - 2296-8016 VL - 9 SP - 1 EP - 16 PB - Frontiers AN - OPUS4-55776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - Synthesizing one-part geopolymers from rice husk ash N2 - One-part geopolymers offer advantages over conventional geopolymers with regard to handling and storage of feedstocks. However, they often suffer from a low degree of reaction, a high amount of crystalline byproducts, and consequently low strength. In this study, one-part geopolymers were produced from rice husk ash (RHA) and sodium aluminate, and investigated by XRD, ATR-FTIR, SEM and compressive strength testing. The compressive strength of the material was 30 MPa, i.e. significantly higher than for comparable one-part geopolymers. This is attributed to an almost complete reaction of the RHA and the absence of crystalline byproducts (zeolites) in the hardened geopolymer. KW - Alkali-activation KW - Geopolymers KW - One-part formulation KW - Bio-based materials KW - Rice husk ash PY - 2016 DO - https://doi.org/10.1016/j.conbuildmat.2016.08.017 SN - 0950-0618 VL - 124 SP - 961 EP - 966 PB - Elsevier Ltd. AN - OPUS4-37226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Greiser, Sebastian A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Brouwers, H.J.H. A1 - Jäger, Christian ED - Bílek, V. ED - Kersner, Z. T1 - 27Al-1H and 27Al-29Si Double resonance NMR of one-part geopolymers N2 - The production and processing of ordinary Portland cement are responsible for nearly 5% of the world C02 emissions. Due to the world’s increasing requirement for building materials, this air pollution is growing up in the next decades. Alternative cement such as geopolymers can reduce these emissions effectively, Conventional geopolymer binders, produced ffom fly ash or metakaolin as aluminosilicate source and water-glass or alkali hydroxide Solutions as activator, are often used and studied. It is known that under appropriate conditions the starting materials form a three-dimensional aluminosilicate structure and create a gel-like matrix, In our case, a silica source from wastewater treatment of chlorosilane production and solid sodium aluminate as starting materials are initiated to harden by water. This procedure is known as “just add water” or “one-part” geopolymer formulation. These composites have significant advantages for use on construction site, but their Chemical structure is not extensively analyzed. In this work, a well known one-part geopolymer is investigated by 'H and 27A1 magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Furthermore, it is shown that overlapping NMR lines can resolved with echo experiments and T2 - NTCC2014 - International conference on non-traditional cement and concrete CY - Brno, Czech Republic DA - 16.06.2014 KW - Geopolymers KW - One-part formulation KW - Zeolite Na-A KW - NMR KW - REDOR PY - 2014 SN - 978-80-214-4867-4 SP - 91 EP - 94 PB - Novpress AN - OPUS4-31224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Lindemann, Mathias A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Brouwers, H.J.H. ED - Bernal, S.A. ED - Provis, J.L. T1 - Structural investigations on one-part geopolymers after different drying regimes T2 - 34th Cement and concrete science conference CY - Sheffield, UK DA - 2015-09-14 KW - Geopolymers KW - One-part mix PY - 2015 SP - 37 EP - 40 AN - OPUS4-34554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Kühne, Hans-Carsten A1 - Brouwers, H.J.H. T1 - Structural Investigations of One-Part Geopolymers with different chemical composition T2 - 19. Internationale Baustofftagung (ibausil) CY - Weimar DA - 2015-09-16 PY - 2015 AN - OPUS4-34492 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten ED - Ludwig, H.-M. T1 - Structural investigations on one-part geopolymers with different chemical composition N2 - Geopolymers are promising alkali activated materials with a wide range of possible applications like heat-resistant coatings and adhesives or concretes with lower C02 emissions than conventional Portland cement-based systems. Conventional ("two-part") geopolymers are synthesized by an activation of aluminosilicate feedstocks like metakaolin or blast furnace slags with highly alkaline solutions like sodium hydroxide solutions and/or water glass solutions. A more recent approach are so called one-part geopolymers, where the alkaline activator is provided in solid form, so that only water has to be added to initiate the geopolymerisation reaction. The handling of alkaline solutions is avoided, which possesses several advantages compared to conventional geopolymers, in particular regarding safety and health issues, and, thus, it improves economic and social acceptance of these binders. However, the new formulations are less exhaustively studied and the knowledge about conventional geopolymers cannot simply be transferred to this new class of binders. T2 - 19. Ibausil - Internationale Baustofftagung CY - Weimar, Germany DA - 16.09.2015 KW - Geopolymers KW - One-part mix PY - 2015 SN - 978-3-00-050225-5 VL - 2 SP - P1.77, 2-857 - 2-864 AN - OPUS4-34880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Patrick A1 - Greiser, Sebastian A1 - Gluth, Gregor A1 - Jäger, Christian A1 - Brouwers, H.J.H. T1 - Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods N2 - One-part geopolymers were synthesized from two different silica materials (a silica-rich residue from chlorosilane production and a commercial microsilica) and sodium aluminate at three different SiO2/Al2O3 ratios and a nominal water/solids ratio of 0.5. The degree of reaction of the silica in the cured geopolymers (i.e. the fraction of silica dissolved to form aluminosilicates and minor products) was determined using two different methods: chemical attack with HCl to dissolve the reaction products and evaluation of peak areas of 29Si MAS NMR spectra. It was found that the degree of reaction of the silica decreases with increasing the silica content of the starting mix, and that it is almost constant after 1 day of curing and almost independent from the kind of starting silica. From the results of the NMR-based method, the mean SiO2/Al2O3 ratio of the reaction products (aluminosilicates and minor products) can be estimated to be ca. 2.0, nearly independent of the starting composition of the geopolymers. The dissolution method is biased, but of sufficient precision to be useful for following changes of the degree of reaction. Major crystalline phases in the cured geopolymers are zeolite A and/or hydrosodalite. Depending on the starting composition, the relative amounts of these zeolites vary; additionally, sodalite (only for the residue from chlorosilane production with >1 wt% Cl-), faujasite, and zeolite EMT can appear in the geopolymers. The 29Si and 27Al MAS NMR results indicate mainly Si(4Al) and Al(4Si) sites, in line with the presence of zeolite A, hydrosodalite, sodalite, and geopolymeric gel of comparatively low SiO2/Al2O3 ratio. KW - Geopolymers KW - One-part mix KW - 29Si MAS NMR KW - 27Al MAS NMR KW - Silica KW - Degree of reaction PY - 2015 DO - https://doi.org/10.1007/s10853-015-9232-5 SN - 0022-2461 SN - 1573-4803 VL - 50 IS - 20 SP - 6768 EP - 6778 PB - Springer Science + Business Media B.V. CY - Norwell, Mass. AN - OPUS4-33826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Greiser, Sebastian A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Hunger, M. A1 - Jäger, Christian T1 - Differentiation of the solid-state NMR signals of gel, zeolite phases and water species in geopolymer-zeolite composites N2 - Geopolymer-zeolite composites were synthesized using a silica-rich industrial byproduct from chlorosilane production and sodium aluminate. Pastes were cured at 80 °C and 80% RH, and subsequently dried in two different climates: at 23 °C and 50% RH, and under vacuum. 1H MAS, 23Na MAS and 29Si MAS NMR and XRD measurements were performed after the drying procedures as well as after subsequent aging. Zeolite Na-A was found beside traces of faujasite-type zeolite and zeolite EMT as major crystalline phases in the cured composites; the fraction of geopolymeric gel in the reaction products was determined to be ~18% on a molar basis. Various water species could be distinguished using 1H MAS and 1H-29Si CP MAS NMR, applying rotorsynchronized echo experiments. The largest fraction of the pore water resides in the α-cages of the zeolite Na-A and in the geopolymeric gel; in addition, water exists in the β-cages of the zeolites and adsorbed at sodium ions. The water species in α-cages and in the pores of the geopolymeric gel exhibit slightly different chemical shifts of 4.7 ppm and 4.9 ppm, respectively, in the 1H MAS NMR spectra. Changes of the water content in the geopolymer pores of differently dried samples were observed and led to slightly varied chemical shifts in the 29Si MAS NMR spectra too. Measurements after more than 500 days revealed no significant aging effects of the composites, which confirm their chemical stability. KW - Geopolymers KW - Aluminosilicate inorganic polymers KW - Zeolite Na-A KW - Spectroscopy KW - Drying PY - 2017 DO - https://doi.org/10.1016/j.ceramint.2016.11.004 SN - 0272-8842 VL - 43 IS - 2 SP - 2202 EP - 2208 PB - Elsevier AN - OPUS4-38694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Simon, Sebastian A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - The effect of heat treatment on the mechanical and structuralproperties of one-part geopolymer-zeolite composites N2 - This contribution presents the results of structural and compressive strength investigations on cured andhigh-temperature treated silica-based one-part geopolymer-zeolite composites. The specimens weresynthesized from two different silica sources, sodium aluminate and water. The phase content as well asthe compressive strength of the cured composites varied depending on the starting mix-design and thesilica feedstock. Besides geopolymeric gel, A-type zeolites and hydrosodalites were the major reactionproducts. One of the silica feedstocks yielded significantly higher compressive strength (19 MPa), whilethe other one appears to cause less variation in phase content. Strength testing indicated an improvementon heating up to 200–400 °C (28 MPa) followed by a moderate decrease up to 700 °C. Above 700 °C the sys-tems underwent new phase formation and shrinkage (volume decrease) deformations. After exposureat 1000 °C the different mixes consisted of a mix of several stuffed silica phases, almost pure hexago-nal nepheline or amorphous phase. Depending on the mix-design, the onset temperature of the hightemperature phase transformations varied. KW - Geopolymers KW - Zeolites KW - Alkali-activation KW - High-temperature treatment KW - Thermal behavior KW - Nepheline PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0040603116300855 DO - https://doi.org/10.1016/j.tca.2016.04.015 SN - 0040-6031 VL - 635 SP - 41 EP - 58 PB - Elsevier Science CY - Amsterdam, Netherlands AN - OPUS4-35967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Jäger, Christian A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - Sulfuric acid resistance of one-part alkali-activated mortars N2 - One-part alkali-activated (geopolymer) mortars based on three different silica-rich starting materials and sodium aluminate, with and without ground granulated blast furnace slag (GGBFS) addition, were tested regarding sulfuric acid resistance according to DIN 19573:2016-03 (70 days at pH = 1). Corresponding pastes were characterized by XRD, SEM, chemical analysis, 29Si MAS NMR and 1H-29Si CPMAS NMR after water storage and after acid exposure. The mortars exhibited a high resistance against sulfuric acid attack, with the best ones conforming to the requirements of DIN 19573:2016-03. The analytical results showed that this was due to precipitation of silica gel at the acid-mortar interface, which formed a mechanically stable layer that protected the subjacent mortar and thus inhibited further degradation. The addition of GGBFS decreased the acid resistance via formation of expansive calcium sulfate phases. KW - Alkali activated materials KW - Acid resistance KW - Nuclear magnetic resonance KW - One-part geopolymers PY - 2018 DO - https://doi.org/10.1016/j.cemconres.2018.04.009 SN - 0008-8846 VL - 109 SP - 54 EP - 63 PB - Elsevier Ltd. AN - OPUS4-44722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sturm, Patrick T1 - Hardening, High-Temperature Resistance and Acid Resistance of One-Part Geopolymers N2 - In this work, one-part geopolymers were synthesized by mixing solid silica and sodium aluminate with water. Pastes were cured at elevated temperatures (60–90 °C) and relative humidity (r.H.) of 80–98 %. After curing the pastes at 80 °C and 80% r.H for one day, the reaction virtually ceased. Depending on the silica source either geopolymer- zeolite composites or zeolite-free geopolymeric gel forms. The compressive strength of the geopolymer-zeolite composites was lower as the compressive strength of a pure geopolymer, mainly due to a significantly denser and glassy microstructure with less interfaces of the latter one. The major part of the thermal dehydration occurred between 60 °C and 200 °C. Up to 700–800 °C only minor changes of the phase assemblage have been observed for the composites. Depending on the paste composition either ceramic or amorphous phases form during exposure to 1000 °C. Compared to other AAM, very low ambient drying/wetting shrinkage/expansion was observed for the mortars The mortars furthermore provide very high resistance against sulfuric acid (pH 1). Huge parts of the corroded layer are not dissolved from the specimen and can still provide protection for a potential substrate. In terms of sulfuric acid resistance, above a critical CaO content, the formation of gypsum is introduced. This causes expansion, cracking and the decrease of the sulfuric acid resistance. KW - Alkali-activation KW - Geopololymers KW - Heat-resistance KW - Acid-resistance PY - 2018 UR - https://pure.tue.nl/ws/files/99010767/20180702_Sturm.pdf SN - 978-90-386-4524-7 SP - 1 EP - 225 PB - Eindhoven University of Technology (TU/e) CY - Eindhoven AN - OPUS4-45597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Priebe, Nsesheye Susan A1 - Vogler, Nico A1 - Sturm, Patrick A1 - Neubert, M. A1 - Schröder, H.-J. A1 - Kühne, Hans-Carsten A1 - Hünger, K.-J. A1 - Gluth, Gregor T1 - Calcined brick clays and mixed clays as supplementary cementitious materials: Effects on the performance of blended cement mortars N2 - While calcined clays in general have been credited with a great potential to mitigate CO2 emissions related to cement production and consumption, calcined brick clays are currently understudied in this regard. In the present work, two brick clays, a low-grade kaolinitic clay, and a mixed clay composed of 50% brick clay and 50% low-grade kaolinitic clay were studied regarding transformations on calcination, and strength and durability performance as well as pore structure of mortars made with the blended cements. All calcined clays exhibited pozzolanic reactivity, with the performance of the brick clays inferior to the low-grade kaolinitic clay. However, the mixed clay performed very similar to the low-grade kaolinitic clay, which points to a viable option for optimal use of brick clays in cementitious systems. The carbonation resistance of the blended cement mortars was generally worse than that of the plain Portland cement mortar, as expected, but the former exhibited a significantly improved chloride penetration resistance. The latter improvement was due to pore structure refinement in the blended cement mortars, compared to the Portland cement mortar. KW - Brick clay KW - Illitic clay KW - Calcined clay KW - Blended cement KW - Supplementary cementitous materials PY - 2021 DO - https://doi.org/10.1016/j.conbuildmat.2020.120990 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 266 SP - 120990 PB - Elsevier Ltd. AN - OPUS4-51362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Sturm, Patrick A1 - Kühne, Hans-Carsten A1 - Gluth, Gregor ED - Bishnoi, S. T1 - Comparison of brick clays and a kaolinitic clay regarding calcination and performance in blended cement mortars N2 - Two brick clays (rich in 2:1 clay minerals) and a low-grade kaolinitic clay were studied regarding their transformations during calcination and their performance in blended cement mortars. The mortars with calcined clays exhibited decreased workability (slump flow), but this effect could be mitigated by employment of a conventional superplasticizer; however, compressive strength of the hardened mortar was lowered in some cases. While the kaolinitic clay generally yielded the highest strength, the performance of a brick clay could be increased by grinding to higher fineness and by mixing it with the kaolinitic clay. T2 - 3rd International Conference on Calcined Clays for Sustainable Concrete CY - New Delhi, India DA - 15.10.2019 KW - Calcined clays KW - Blended cements KW - Workability KW - Supplementary cementitious materials PY - 2020 SN - 978-981-15-2805-7 DO - https://doi.org/10.1007/978-981-15-2806-4_10 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 25 SP - 85 EP - 93 PB - Springer CY - Singapore AN - OPUS4-50663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hlavacek, Petr A1 - Gluth, Gregor A1 - Lüchtenborg, Jörg A1 - Sturm, Patrick A1 - Mühler, T. A1 - Kühne, Hans-Carsten A1 - Günster, Jens T1 - A Novel Approach to Additive Manufacturing of Alkali-activated Materials: Laser-induced Slip Casting (LIS) of Lithium Aluminate/Silica Slurries N2 - Additive manufacturing of alkali-activated materials currently attracts a lot of attention, because of the possibility to produce customized high-performance elements for a range of applications, potentially being more resource-efficient than conventionally produced parts. Here, we describe a new additive manufacturing process for alkali-activated materials that is based on selective laser-heating of lithium aluminate/microsilica slurries. The new process-material combination allows to manufacture elements with complex geometries at high building rates and high accuracy. The process is versatile and transferrable to structures of sizes differing by orders of magnitude. The mechanical strength of the obtained materials was in the range of values reported for conventional metakaolin-based geopolymers, and superior to what has been hitherto reported for alkali-activated materials produced by additive manufacturing. This mechanical performance was obtained despite the fact that the degree of reaction of the lithium aluminate and the microsilica was low, suggesting that significant reactions took place only at the surface of the microsilica particles. KW - Laser-induced slip casting KW - Alkali-activated materials KW - Additive manufacturing PY - 2019 DO - https://doi.org/10.29272/cmt.2018.0011 SN - 2612-4882 VL - 1 IS - 2 SP - 138 EP - 144 PB - Techna Group AN - OPUS4-49142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - Einkomponentige alkaliaktivierte Bindemittel und Mörtel mit hohem Widerstand gegen Schwefelsäureangriff N2 - Einkomponentige alkaliaktivierte Bindemittel (AAB), d. h. AAB, bei denen der Aktivator als Feststoff im Bindemittel vorliegt, weisen Vorteile hinsichtlich der praktischen Anwendung im Bauwesen gegenüber konventionellen AAB auf. Einkomponentige AAB lassen sich als Gemische aus reaktiver Silica und Natriumaluminat herstellen, wobei die Reaktionsprodukte von der eingesetzten Silica und den Verhältnissen Na2O/Al2O3/SiO2/H2O abhängen: Während Mikrosilica und ähnliche Reststoffe zu zeolithreichen Produkten führen, erhält man aus Reisschalenasche vollständig amorphe Gele (sog. «Geopolymere »). Mörtel auf Basis solcher Bindemittel entsprechen den Anforderungen von DIN 19573:2016-03 hinsichtlich des Widerstands gegen Schwefelsäureangriff (Prüfung bei pH = 1 für 70 d) und sind damit potentiell als Reparatursysteme für Abwasserinfrastruktur geeignet. Untersuchungen mittels 29Si-MAS-NMR und 1H-29Si-Kreuzpolarisations(CP)-MAS-NMR sowie REM-Aufnahmen von erhärteten und dem Schwefelsäureangriff ausgesetzten AAB zeigen, dass der hohe Säurewiderstand v. a. auf die Fällung von Silicagel an der Grenzfläche Mörtel/Säure zurückzuführen ist, wodurch der Korrosionsfortschritt in darunterliegenden Schichten verlangsamt wird. T2 - Tagung Bauchemie der GDCh-Fachgruppe Bauchemie CY - Aachen, Germany DA - 30.09.2019 KW - Alkaliaktivierte Bindemittel KW - Biogene Schwefelsäurekorrosion KW - Abwasserinfrastruktur KW - Reparatursysteme PY - 2019 SP - 107 EP - 113 PB - Gesellschaft Deutscher Chemiker CY - Frankfurt am Main AN - OPUS4-49264 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Priebe, Nsesheye Susan A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Vogler, Nico A1 - Kühne, Hans-Carsten T1 - Comparison of calcined illitic clays (brick clays) and low-grade kaolinitic clays as supplementary cementitious materials N2 - The use of calcined clays as supplementary cementitious materials (SCMs) has been identified as a viable option to decrease the CO2 emissions related to cement production. However, while extensive data is available about kaolinitic clays in this context, other clays such as illitic clays appear to be under-studied. Therefore, in the present study, two illitic clays were compared to two low-grade kaolinitic clays in terms of transformations in the calcination temperature range 650–900 °C, and performance of the calcined clays in blended cement pastes as measured by strength evolution, heat release, hydrated phase formation and portlandite consumption. The illitic clays required a higher calcination temperature for complete dehydroxylation of their illite than what is necessary for dehydroxylation of kaolinite. These higher calcination temperatures also led to particle sintering, significantly decreasing the specific surface area of the illitic clays, particularly for the clay with the higher Fe2O3 content. Nevertheless, while the kaolinitic clays generally exhibited the best performance as SCM, the illitic clay with lower Fe2O3 content performed similar to the kaolinitic clays when calcined at optimum temperature and applied at a moderate substitution rate. These findings demonstrate that several different clays have the potential to be used as SCM and indicate possible routes to identify suitable deposits for this purpose. KW - Blended cement KW - Calcined clay KW - Brick clay KW - Illite KW - Kaolinite PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488195 DO - https://doi.org/10.1617/s11527-019-1393-2 SN - 1359-5997 SN - 1871-6873 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 52 IS - 5 SP - Article Number 94 PB - Springer Nature AN - OPUS4-48819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Kühne, Hans-Carsten ED - Wang, J. ED - Kriven, W. ED - Fey, T. ED - Colombo, P. ED - Weber, W.J. ED - Amoroso, J. ED - Fahrenholtz, W.G. ED - Shimamura, K. ED - Halbig, M. ED - Kirihara, S. ED - Wu, Y. ED - Shurgart, K. T1 - One-part geopolymers and aluminosilicate gel-zeolite composites: factors influencing microstructure and engineering properties N2 - Mixing and curing of geopolymers and related alkali-activated materials without storage and handling of highly alkaline solutions possesses advantages regarding safety and economic viability. One possible approach is to produce these materials from solid silica feedstocks and solid sodium aluminate, and subsequent mixing with water. We present a comparison between geopolymers and aluminosilicate gel-zeolite composites synthesized by this route from different silica feedstocks (by-product silica from chlorosilane production, microsilica, rice husk ash) and with different SiO2/Al2O3 ratios, using results from XRD, NMR, SEM, thermal analysis, mechanical and acid resistance testing. The use of rice husk ash favors formation of a fully amorphous geopolymer with high strength. Utilization of the other silica feedstocks leads to formation of aluminosilicate gel-zeolite composites, the amount and kind of zeolites depending on the feedstock and the SiO2/Al2O3 ratio. These composites show beneficial dehydration behavior, viz. no distinct dehydration step of thermal strain, with the phase assemblage after heating to 1000°C controlled by the starting composition. Mortars produced from both, the geopolymers as well as the composites, exhibit high resistance to sulfuric acid attack, making them promising materials for the construction and the repair of industrial and sewer structures. T2 - 42nd International Conference on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 21.01.2018 KW - Alkali-activated materials KW - One-part geopolymers KW - Sulfuric acid resistance KW - High-temperature resistance PY - 2019 DO - https://doi.org/10.1002/9781119543381.ch17 VL - 39 IS - 3 SP - 183 EP - 196 PB - John Wiley & Sons AN - OPUS4-47282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - Investigations on one-part geopolymers synthesized from different silica sources N2 - One-part geopolymers, synthesized from three different silica sources and sodium aluminate, were investigated regarding their microstructure and the evolution of their compressive strength on curing at slightly elevated temperatures. The effect of thermal treatment was studied up to 1000 °C and for the investigation of the chemical durability specific samples were treated with sulfuric acid (H2SO4, pH = 1). Depending on the silica feedstock, different degrees of reaction were observed. One of the silicas had a significantly higher reactivity. For two of the silicas, significant amounts of zeolites occurred as reaction products besides geopolymeric gel, whereas the more reactive silica source lead to the formation of a rather fully condensed geopolymeric network. The composites indicated promising behavior on heating in so far as no distinct shrinkage step occurred in the temperature range of dehydration. Up to 400 °C the residual strength of those mixes increased. Above 800 °C the samples underwent new phase formation. After exposure to sulfuric acid (pH 1; 70 d) specimens showed a residual compressive strength of about 77 % of the reference, indicating high acid resistance. T2 - 6th International Conference on Non-Traditional Cement & Concrete CY - Brno, Czech Republic DA - 19.06.2017 KW - Geopolymers KW - Zeolites KW - Thermal properties KW - Acid resistance KW - Chemical durability PY - 2017 SN - 978-80-214-5507-8 SP - 299 EP - 306 AN - OPUS4-40774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Greiser, Sebastian A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Jäger, Christian T1 - 29Si{27Al}, 27Al{29Si} and 27Al{1H} double-resonance NMR spectroscopy study of cementitious sodium aluminosilicate gels (geopolymers) and gel-zeolite composites N2 - The influence of starting materials and synthesis route on the properties and the structure of cementitious sodium aluminosilicate gels is not fully understood, partly due their amorphous nature and the fact that they often contain residual reactants, which can make the results of single-pulse NMR spectroscopy applied to these materials difficult to interpret or ambiguous. To overcome some of these limitations, 29Si{27Al} TRAPDOR NMR as well as 27Al{29Si} and 27Al{1H} REDOR NMR spectroscopy were applied to materials synthesized by the one-part alkali-activation route from three different amorphous silica starting materials, including rice husk ash. The latter led to formation of a fully amorphous sodium aluminosilicate gel (geopolymer), while the materials produced from the other silicas contained amorphous phase and crystalline zeolites. Application of the double-resonance NMR methods allowed to identify hydrous alumina gel domains in the rice husk ash-based material as well as significantly differing amounts of residual silica in the three cured materials. Four-coordinated Al existed not only in the aluminosilicate gel framework but also in a water-rich chemical environment with only a small amount of Si in proximity, likely in the alumina gel or possibly present as extra-framework Al in the aluminosilicate gel. The results demonstrate how the employment of different silica starting materials determines the phase assemblage of one-part alkali-activated materials, which in turn influences their engineering properties such as the resistance against chemically/biologically aggressive media. KW - Alkali-activated materials KW - Solid-state NMR KW - Aluminium hydroxide KW - Rice husk ash PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469353 DO - https://doi.org/10.1039/C8RA09246J SN - 2046-2069 VL - 8 IS - 70 SP - 40164 EP - 40171 PB - Royal Society of Chemistry AN - OPUS4-46935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten ED - Barcevic, A. ED - Rukavina, M.J. ED - Damjanovic, D. ED - Guadagnini, M. T1 - Shrinkage and bond behaviour of one-part alkali-activated mortars N2 - Mortars for application on concrete, e.g. repair mortars or protective coatings, need to have a durable bond to the substrate. This bond is determined by the adhesion between the two materials and by the differential deformations of the mortar and the substrate. In the present contribution, the hygric deformations (shrinkage/expansion) of novel one-part alkali-activated mortars and their bond to concrete substrates are studied. Shrinkage of the mortars was studied at 50 % r.H., while expansion was studied on mortars stored over an open water surface (> 99% r.H.). The bond behaviour was studied by pull-off tests according to DIN EN 1542 and by optical microscopy. The alkali-activated mortars exhibit hygric deformations much lower than the deformations of an established, commercial mortar for sewer maintenance that was tested as reference in parallel with the alkali-activated mortars. The bond behaviour of the alkali-activated mortars depends strongly on their mix-design and curing. Optical microscopy showed that in the mortars with lower bond strength, cracks developed in the mortar during curing. Mortars with appropriate mix-design and curing did not exhibit cracking, and their pull-off strength (up to >3 MPa) conformed to the requirements of relevant standards. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Alkali-activated materials KW - Repair mortars KW - Sewer repair KW - Hygric deformations KW - Bond strength PY - 2019 SN - 978-2-35158-225-1 VL - 3 SP - 103 EP - 110 PB - RILEM Publications CY - Paris AN - OPUS4-47587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska A1 - Hofmann, Detlef A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Basedau, Frank A1 - Sturm, Patrick A1 - Lay, Vera A1 - Niederleithinger, Ernst T1 - Multi-sensor conception for safe sealing structures in underground repositories N2 - The project "SealWasteSafe" of the Bundesanstalt für Materialforschung und -prüfung (BAM, Berlin) deals with sealing structures applied for underground disposal of nuclear waste from two perspectives: (1) material improvement for application in sealing constructions and (2) feasibility study regarding multi-sensor approaches to ensure quality assurance and long-term monitoring. One specimen of 150 l made of alkali-activated material, which was found innovative and suitable for sealing constructions based on preliminary laboratory studies, and, for comparison purpose, another one made of salt concrete, are manufactured with an integrated multi-sensory setup for quality assurance and long-term-monitoring. The specimens were left in their cast form and additionally thermally insulated to simulate the situation in the repository. The multi-sensory concept comprises RFID technology embedded in the specimens suppling material temperature and moisture measurements, integrated fibre optic sensing allowing strain measurement and acoustic emission testing for monitoring possible crack formation. Overall, the suitability and the functionality of the sensors embedded into and attached to strongly alkaline (pH > 13 for the AAM) and salt corrosive (NaCl) environment was proven for the first 672 h. First temperature measurement based on RFID succeeded after 626 h for the alkali-activated material and after 192 h for the conventional salt concrete. Strain measurement based on distributed fibre optic sensing turned out the alkali-activated material with > 1 mm m-1 undergoing approximately twice the compression strain as the salt concrete with strains < 0.5 mm m-1. In contrast, the acoustic emission first and single hits representing crack formation in numbers, was found for alkali-activated material half of that detected at the salt concrete. T2 - SMIRT 26 CY - Berlin/Potsdam, Germany DA - 10.07.2022 KW - SealWasteSafe KW - Monitoring KW - Acoustic emission KW - Fibre optic sensing KW - RFID technology KW - alkali-activated material PY - 2022 SP - 1 EP - 10 AN - OPUS4-55371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Mielentz, Frank A1 - Prabhakara, Prathik A1 - Baensch, Franziska A1 - Johann, Sergej A1 - Hofmann, Detlef A1 - Sturm, Patrick A1 - Stamm, Michael A1 - Niederleithinger, Ernst T1 - Multi-sensory monitoring and ultrasound for quality assurance at underground sealing structures N2 - Within the safety concepts of underground disposal sites of nuclear waste, engineered barriers play an important role. As these sealing structures have high demands concerning integrity, we aim at advancing the available construction materials, monitoring, and inspection techniques within the project SealWasteSafe. A specifically developed alkali-activated material is compared to classical salt concrete. A comprehensive multi-sensory monitoring scheme is used at 150-340 l specimens to monitor setting and hardening of both materials. All sensors are demonstrated to resist the highly alkaline environments. Besides cabled and wireless temperature and humidity of the materials, strain variations using fibre optic sensors and acoustic emissions are recorded over periods of at least 28 days, partly for more than eight months. After hardening of the specimens, further nondestructive evaluations using ultrasonic echo and thermographic measurements are conducted. Preliminary results proof the suitability of the tested sensors and clearly highlight differences between the tested materials. Particularly, the newly developed alkali-activated material shows lower acoustic emission activity indicating less cracking activity. Additionally, unique ultrasonic methods will enable better images of potential internal objects and cracks at in-situ sealing structures. A largescale ultrasonic system is optimised to reliably detect objects at a depth exceeding 9 m while still obtaining a good resolution. Modelling studies show the potential of further increasing the distance between individual transducer arrays. Additionally, a new ultrasonic borehole probe using phased arrays allowing for beam focussing is constructed and tested. Laboratory measurements at a halfcylindrical concrete specimen coincide well with the previous modelling. In total, the presented safe materials, detailed monitoring approaches and ultrasonic quality assurance methods will help to obtain safe sealing structures within salt as a host rock. The concepts can partly be transferred to sealing structures in alternative host rocks and will also be valuable for non-nuclear waste repositories. T2 - NDE NucCon CY - Espoo, Finland DA - 25.01.2023 KW - SealWasteSafe KW - Engineered barriers KW - Monitoring KW - Embedded sensors KW - Ultrasonic imaging PY - 2023 SP - 2 EP - 10 AN - OPUS4-56928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Baensch, Franziska A1 - Johann, Sergej A1 - Sturm, Patrick A1 - Mielentz, Frank A1 - Prabhakara, Prathik A1 - Hofmann, Detlef A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten T1 - SealWasteSafe: materials technology, monitoring techniques, and quality assurance for safe sealing structures in underground repositories N2 - Within the project SealWasteSafe, we advance construction materials and monitoring concepts of sealing structures applied for underground disposal of nuclear or toxic waste. As these engineered barriers have high demands concerning integrity, an innovative alkali-activated material (AAM) is improved and tested on various laboratory scales. This AAM has low reaction kinetics related to a preferential slow release of the heat of reaction in comparison to alternative salt concretes based on Portland cement or magnesium oxychloride cements. Hence, crack formation due to thermally induced strain is reduced. After successful laboratory scale analysis (Sturm et al., 2021), the AAM is characterised on a larger scale by manufacturing test specimens (100–300 L). Conventional salt concrete (DBE, 2004) and the newly developed AAM are compared using two specimen geometries, i.e. cylindrical and cuboid. A comprehensive multisensor monitoring scheme is developed to compare the setting process of AAM and salt concrete for these manufactured specimens. The analysed parameters include temperature and humidity of the material, acoustic emissions, and strain variations. Passive sensor systems based on radiofrequency identification technology (RFID) embedded in the concrete, enable wireless access to temperature and humidity measurements and are compared to conventional cabled systems. Additionally, fibre-optic sensors (FOS) are embedded to record strain, but also have potential to record temperature and moisture conditions. Part of this project aims at demonstrating the high reliability of sensors and also their resistance to highly alkaline environments and to water intrusion along cables or at sensor locations. Further technical improvements were implemented so that first results clearly show the scalability of the setting process from previous small-scale AAM experiments and particularly the high potential of the newly developed approaches. Furthermore, ultrasonic methods are used for quality assurance to detect obstacles, potential cracks and delamination. On the one hand, both active and passive ultrasonic measurements complement the results obtained from the multisensor monitoring scheme for the produced specimens. On the other hand, the unique large aperture ultrasonic system (LAUS) provides great depth penetration (up to nearly 10 m) and can thus be applied at in situ sealing structures built as a test site in Morsleben by the Federal Company for Radioactive Waste Disposal (Bundesgesellschaft für Endlagerung, BGE) as shown by Effner et al. (2021). An optimised field lay-out identified from forward modelling studies and advanced imaging techniques applied to the measured data will further improve the obtained results. To characterise the inside of the test engineered barrier and achieve a proof-of-concept, an ultrasonic borehole probe is developed to enable phased arrays that can further improve the detection of potential cracks. Modelling results and first analysis of semispherical specimens confirmed the reliability of the directional response caused by the phased arrays of the newly constructed ultrasonic borehole probe. Overall, the project SealWasteSafe improves the construction material, multisensor monitoring concepts and ultrasonics for quality assurance. This will help to develop safe sealing structures for nuclear waste disposal. The outcomes are particularly valuable for salt as a host rock but partly also transferrable to alternative conditions. T2 - Safe ND Interdisciplinary research symposium on the safety of nuclear disposal practices CY - Berlin, Germany DA - 10.11.2021 KW - Borehole probe KW - SealWasteSafe KW - Engineered barrier KW - Materials technology KW - Monitoring KW - AAM KW - Ultrasound PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539172 DO - https://doi.org/10.5194/sand-1-127-2021 VL - 1 SP - 127 EP - 128 PB - Copernicus AN - OPUS4-53917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Law, D. W. A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Gunasekara, C. A1 - Yamchelou, M. T. ED - Banthia, N. ED - Soleimani-Dashtaki, S. ED - Mindess, S. T1 - Characteristics of high calcium fly ash geopolymer mortar N2 - Portland cement is one of the principal sources of anthropomorphic CO2 emissions. It is estimated that cement production contributes up to 10% of greenhouse gas emissions and annual cement production over 4 billion tons. This has led to the development of a range of alkali activated materials (AAM), the most common precursor materials being class F fly ash and blast furnace slag. At present Class C Fly Ash is not widely utilized as an AAM due to the chemical composition and activation requirements. However, initial research on high Calcium German Class C Fly Ash suggests that the material may have potential for application as an AAM. This paper reports the development of ambient cured alkali activated mortar optimised by varying the alkali modulus and w/b ratio. The evolution of the mechanical and microstructural properties is reported over the initial 28 day period. Compressive strength in excess of 10 MPa at 7 days and 15 MPa at 28 days was achieved at ambient temperature. Similar strengths were observed for both 10% and 15% dosage but as dosage increases the optimal Alkali Modulus reduces. T2 - 77th RILEM Annual Week and the 1st Interdisciplinary Symposium on Smart & Sustainable Infrastructures (ISSSI 2023) CY - Vancouver, BC, Canada DA - 04.09.2023 KW - Alkali-activated materials KW - Brown Coal Fly Ash KW - Lignite Coal PY - 2024 SN - 978-3-031-53388-4 SN - 978-3-031-53389-1 DO - https://doi.org/10.1007/978-3-031-53389-1_8 SN - 2211-0844 SN - 2211-0852 VL - 48 SP - 82 EP - 92 PB - Springer CY - Cham AN - OPUS4-59578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Henning, Ricky A1 - Sturm, Patrick A1 - Keßler, S. A1 - Gluth, Gregor T1 - Corrosion of hybrid alkaline cements in saline solution simulating evaporite rock – effect of the Portland clinker content N2 - Two hybrid alkaline cements (HAC) based on Portland clinker, ground granulated blast furnace slag (GGBFS), fly ash and sodium sulfate, as well as an alkali-activated GGBFS/fly ash blend and a Portland cement paste were exposed to a saturated saline solution for 70 days. The combined chemical attack of chloride, magnesium and sulfate ions and the associated changes of the phase assemblage of the materials were studied by X-ray diffraction, thermal analysis and spatially resolved X-ray fluorescence spectroscopy. The experimental results revealed dissolution of ettringite, C-N-A-S-H and calcite, and the formation of gypsum, Kuzel's salt and Friedel's salt; thermodynamic modeling indicated the formation of M-S-H. The resistance of the HAC against attack by the saline solution increased with Portland clinker fraction. The capacity of portlandite to maintain pH at values above 10 is found to be a major factor controlling the resistance of HAC against corrosion in the saline solution. KW - Hybrid cements KW - Alkali-activated materials KW - Magnesium chloride KW - Corrosion KW - Salt attack PY - 2023 DO - https://doi.org/10.1016/j.cemconres.2023.107215 SN - 0008-8846 SN - 1873-3948 VL - 172 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-57638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Schmidt, Wolfram A1 - Astorg, Adéle A1 - Kühne, Hans-Carsten A1 - Brouwers, H.J.H. T1 - Rheological properties of microsilica and sodium aluminate based one-part geopolymers compared to ordinary Portland cement T2 - 5th International Conference Non-Traditional Cement & Concrete CY - Brno, Czech Republic DA - 2014-06-16 KW - Alkali-activated binders KW - One-part geopolymers KW - Rheology PY - 2014 SN - 978-80-214-4867-4 SP - 71 EP - 74 AN - OPUS4-31159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Watolla, Marie-Bernadette A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Rickard, W.D.A. A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - Intumescent geopolymer-bound coatings for fire protection of steel N2 - The passive fire protection of steel structures and other load-bearing components will continue to gain importance in future years. In the present contribution, novel intumescent aluminosilicate (geopolymer-bound) composites are proposed as fire-protective coatings on steel. Steel plates coated with these materials were exposed to the standard temperature-time curve as defined in ISO 834 – 1:1999. The coatings partially foamed during curing and expanded further during thermal exposure, demonstrating their intumescent characteristic.Thermogravimetryandoscillatory rheometry determined that the intumescent behavior is attributed to a transition to a viscous state (loss factor > 1) in the temperature range of major water release, differing from conventional geopolymers. XRD and SEM images showed that the coatings had characteristics of ceramic or glass-ceramic foams after fire resistance testing, suggesting superior performance under challenging conditions. The thickness of the coatings influenced their foaming and intumescent behavior and thus the time for the coated steel plates to reach 500 °C. A number of additives were also studied with the best performance obtained from samples containing sodium tetraborate.Acoating of just 6mmwas able to delay the time it takes for a steel substrate to reach 500 °C to more than 30 minutes. KW - Geopolymers KW - Fire protection KW - Intumescence KW - Coatings KW - Fire resistance PY - 2017 UR - https://www.ceramic-science.com/articles/all-articles.html?article_id=100558 DO - https://doi.org/10.4416/JCST2017-00035 VL - 8 IS - 3 (Topical issue: Geopolymers) SP - 351 EP - 364 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-42139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Weba, Luciana A1 - Silbernagl, Dorothee A1 - Mota Gassó, Berta A1 - Höhne, Patrick A1 - Sturm, Heinz A1 - Pauli, Jutta A1 - Resch-Genger, Ute A1 - Steinborn, Gabriele ED - Khayat, Kamal Henry T1 - Influences of nano effects on the flow phenomena of self-compacting concrete N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as selfcompacting concrete. Meanwhile admixtures have become common practice in concrete technology, but the understanding of these highly complex polymers in the entire concrete system lags far behind their application. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 8th International RILEM Symposium on Self-Compacting Concrete CY - Washington, D.C., USA DA - 15.05.2016 KW - Adsorption KW - Analytics KW - Hydration KW - Polycarboxylate ether KW - Rheology PY - 2016 SP - 245 EP - 254 AN - OPUS4-36882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Henning, Ricky A1 - Sturm, Patrick A1 - Keßler, S. A1 - Gluth, Gregor ED - Lothenbach, B. ED - Wieland, E. ED - Altmaier, M. T1 - Influence of salt aggregate on the degradation of hybrid alkaline cement (HAC) concretes in magnesium chloride-rich saline solution simulating evaporite rock N2 - Concretes produced from salt aggregate and hybrid alkaline cements, an alkali-activated slag/fly ash blend, or a Portland cement were exposed to a magnesium chloride-rich saline solution ([Mg2+] = 3.6 m, [Cl−] = 8.3 m), representing a solution formed after contact of surface water with evaporite rock (rock salt) in a nuclear waste repository. The hydration and deterioration of the concretes were studied with X-ray diffraction, thermogravimetric analysis, pH mapping and permeability measurements. The results show that calcium silicate hydrate (C-S-H) or sodium-substituted calcium aluminium silicate hydrate (C-N-A-S-H) and Friedel's salt were the major reaction products in the concretes prior to exposure to the saline solution. During exposure to the saline solution, increasing amounts of C-S-H/C-N-A-S-H dissolved, and gypsum and a secondary AFm phase formed. The durability of the concretes improved with increasing amounts of Portland clinker in the cements, due to the associated differences in permeability and chemical resistance. Nevertheless, a massive increase of permeability occurred for all concretes, likely caused by crack formation due to the formation of gypsum from anhydrite in the salt aggregate. Thus, the behavior of the concretes differed from, and was more complex than, the behavior of plain cement pastes. T2 - Joint 6th International Workshop on Mechanisms and Modelling of Waste/Cement Interactions (JCCW 2023) CY - Prague, Czech Republic DA - 20.11.2023 KW - Nuclear waste repository KW - Evaporite rock KW - Magnesium chloride brine KW - Concrete KW - Hybrid alkaline cement PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599928 DO - https://doi.org/10.1016/j.apgeochem.2024.106027 SN - 0883-2927 SN - 1872-9134 VL - 168 SP - 1 EP - 14 PB - Elsevier AN - OPUS4-59992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagic, Anera A1 - Russo, Francesco A1 - Vogl, Jochen A1 - Sturm, Patrick A1 - Stephan, D. A1 - Gluth, Gregor ED - Resch-Genger, Ute ED - Koch, Matthias ED - Meermann, Björn ED - Weller, Michael G. T1 - Development of a sample preparation procedure for Sr isotope analysis of Portland cements N2 - The 87Sr/86Sr isotope ratio can, in principle, be used for provenancing of cement. However, while commercial cements consist of multiple components, no detailed investigation into their individual 87Sr/86Sr isotope ratios or their influence on the integral 87Sr/86Sr isotope ratio of the resulting cement was conducted previously. Therefore, the present study aimed at determining and comparing the conventional 87Sr/86Sr isotope ratios of a diverse set of Portland cements and their corresponding Portland clinkers, the major component of these cements. Two approaches to remove the additives from the cements, i.e. to measure the conventional 87Sr/86Sr isotopic fingerprint of the clinker only, were tested, namely, treatment with a potassium hydroxide/sucrose solution and sieving on a 11-µm sieve. Dissolution in concentrated hydrochloric acid/nitric acid and in diluted nitric acid was employed to determine the 87Sr/86Sr isotope ratios of the cements and the individual clinkers. The aim was to find the most appropriate sample preparation procedure for cement provenancing, and the selection was realised by comparing the 87Sr/86Sr isotope ratios of differently treated cements with those of the corresponding clinkers. None of the methods to separate the clinkers from the cements proved to be satisfactory. However, it was found that the 87Sr/86Sr isotope ratios of clinker and cement generally corresponded, meaning that the latter can be used as a proxy for the clinker 87Sr/86Sr isotope ratio. Finally, the concentrated hydrochloric acid/nitric acid dissolution method was found to be the most suitable sample preparation method for the cements; it is thus recommended for 87Sr/86Sr isotope analyses for cement provenancing. KW - Cement KW - Provenancing KW - Sr isotopes KW - Portland clinker KW - Dissolution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542239 DO - https://doi.org/10.1007/s00216-021-03821-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - 15 (Topical collection: Analytical methods and applications in the materials and life sciences) SP - 4379 EP - 4389 PB - Springer CY - Berlin AN - OPUS4-54223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Patrick A1 - Moye, J. A1 - Gluth, Gregor A1 - Vogler, Nico A1 - Taffe, A. A1 - Kühne, Hans-Carsten ED - Rossignol, S. ED - Gluth, Gregor T1 - Properties of alkali-activated mortars with salt aggregate for sealing structures in evaporite rock N2 - Concrete structures for sealing of tunnels in the host rock are an essential part of systems for nuclear waste storage. However, concretes based on blended cements or magnesium oxychloride cements, which are commonly considered for this application, can deteriorate severely due to a significant heat of hydration and associated deformation and cracking. Alkali-activated materials (AAMs) offer a potential solution to this problem because of their low heat release during hardening. To explore their suitability for the construction of sealing structures in evaporite rock, various AAMs with salt aggregate were studied regarding fresh properties, heat release, mechanical properties and microstructure. The heat of reaction of the AAMs was up to 55% lower than that of a blended cement designed for sealing structures, indicating significant benefits for the intended application. Other relevant properties such as mechanical strength and permeability depended strongly on the mix-design of the AAMs and curing conditions. KW - Alkali-activated materials KW - Geopolymers KW - Nuclear waste storage KW - Sealing structures KW - Evaporite rock PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519422 DO - https://doi.org/10.1016/j.oceram.2020.100041 SN - 2666-5395 VL - 5 IS - Special issue: Alkali-activated materials and geopolymers in ceramics and beyond SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-51942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -