TY - CONF A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Storm, Sven-Uwe A1 - Rudolph, Michael A1 - Schoppa, André A1 - Szczepaniak, Mariusz T1 - Mobile gas cylinders in fire: Consequences in case of failure T2 - Fire Safety Journal N2 - Commercial, off-the shelf propane cylinders are subjected to high safety regulations. Furthermore, those cylinders are equipped with safety devices like pressure relief valves (PRV). Despite these regulations and safety measures, a failure of the Container is possible if exposed to an intense fire. The result of this is severe hazard for users, rescue forces and infrastructure. Within the framework of a destructive test series, 15 identical propane cylinders, without pressure relief devices, were exposed to an intensive fire in horizontal Position until failure. Each cylinder was filled with a mass of m =11 kg of liquid propane. Three different fire sources were used (wood, petrol, propane). The experiments revealed the failure of all cylinders in a time period t < 155 s. The failure lead to a fragmentation into several major parts with throwing distances of up to l =262 m. In all trials, the temperature of the cylinder wall (top, side, bottom), of the liquid phase inside and of the surrounding fire (top, side, bottom) was recorded. In addition, the inner cylinder pressure and the induced overpressure of the blast wave after the failure were recorded. Overpressures of up to p=0.27 bar were recorded close to the cylinder (l =5 m). AM tests were documented hy video from several positions (general view, close-up, high-speed 5000 fps). This test series creates the basis for further experimental studies in the field of alternative fuels for vehicles. The aim of this test series is to assess and analyse the consequences of the failure of gas vessels (for LPG, CNG, CGH2) in the aftermath of severe incidents. T2 - 12th International Symposium on Fire Safety Science CY - Lund, Sweden DA - 12.06.2017 KW - Explosion KW - Gas cylinders KW - Consequences PY - 2017 DO - https://doi.org/X0.1016/j.firesaf.2017.05.006 SN - 0379-7112 VL - 91 SP - 989 EP - 996 PB - Elsevier Ltd. AN - OPUS4-43028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Storm, Sven-Uwe A1 - Rudolph, Michael A1 - Schoppa, André A1 - Sczepaniak, Mariusz T1 - Mobile gas cylinders in fire: Consequences in case of failure JF - Fire Safety Journal N2 - Commercial, off-the shelf propane cylinders are subjected to high safety regulations. Furthermore, those cylinders are equipped with safety devices like pressure relief valves (PRV). Despite these regulations and safety measures, a failure of the container is possible if exposed to an intense fire. The result of this is severe hazard for users, rescue forces and infrastructure. Within the framework of a destructive test series, 15 identical propane cylinders, without pressure relief devices, were exposed to an intensive fire in horizontal position until failure. Each cylinder was filled with a mass of m =11 kg of liquid propane. Three different fire sources were used (wood, petrol, propane). The experiments revealed the failure of all cylinders in a time period t < 155 s. The failure lead to a fragmentation into several major parts with throwing distances of up to l =262 m. In all trials, the temperature of the cylinder wall (top, side, bottom), of the liquid phase inside and of the surrounding fire (top, side, bottom) was recorded. In addition, the inner cylinder pressure and the induced overpressure of the blast wave after the failure were recorded. Overpressures of up to p=0.27 bar were recorded close to the cylinder (l =5 m). All tests were documented by video from several positions (general view, close-up, high-speed 5000 fps). This test series creates the basis for further experimental studies in the field of alternative fuels for vehicles. The aim of this test series is to assess and analyse the consequences of the failure of gas vessels (for LPG, CNG, CGH2) in the aftermath of severe incidents. KW - Explosion KW - Gas cylinders KW - Consequences PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S037971121730098X DO - https://doi.org/10.1016/j.firesaf.2017.05.006 SN - 0379-7112 SN - 1873-7226 VL - 91 SP - 989 EP - 996 PB - Elsevier AN - OPUS4-40550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Hüllmann, Dino A1 - Lilienthal, A.J. A1 - Kluge, Martin T1 - Bringing Mobile Robot Olfaction to the Next Dimension – UAV-based Remote Sensing of Gas Clouds and Source Localization T2 - Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA) N2 - This paper introduces a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance. No direct contact with the target gas is needed and thus the influence of the aerial platform on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we introduce and present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile hexacopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing the gas sensing and aiming capabilities under realistic conditions. T2 - IEEE International Conference on Robotics and Automation (ICRA) CY - Singapore DA - 29.05.2017 KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - 3-axis gimbal KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Localization of gas sources KW - Aerial platform PY - 2017 SN - 978-1-5090-4632-4 SP - 3910 EP - 3916 PB - IEEE AN - OPUS4-40545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Rudolph, Michael A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Schalau, Bernd A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz A1 - Mair, Georg T1 - Infrared radiation measurement at failure of mobile gas vessels T2 - Tagungsband ICDERS N2 - 15 identical off-the-shelf propane cylinders (m = 11 kg liquid propane) were underfired. The infrared Radiation of the Explosion, that occurred in the aftermath of the vessel failure, was recorded using four bolometers. These measurements are compared with an estimation of the Maximum intensity gained by an Analysis of the Video data, an Extended Version of the Stefan-Boltzmann law and a BLEVE model. T2 - 26th International Colloquium on the Dynamics of Explosions and Reactive Systems CY - Boston, USA DA - 30.07.2017 KW - Failure of gas vessels KW - Propane cylinder KW - Gas explosion KW - Consequences KW - Infrared radiation PY - 2017 SP - 1 EP - 6 PB - FM Global CY - Seattle, USA AN - OPUS4-41993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -