TY - CONF A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Johansson, G. A1 - Zandi, K. A1 - Portal, Natalie Williams A1 - Müller, U. T1 - Numerical modelling of UHPC and TRC sandwich elements for building envelopes N2 - ln this paper a modelling approach is presented to reproduce the mechanical behaviour of sandwich panels via finite element analysis. Two types of panels were investigated in this scope of work. The first sandwich element was a textile reinforced concrete (TRC) panel with cellular lightweight concrete insulation and the second configuration was an ultra-high performances concrete (UHPC) panel with aerated autoclaved concrete insulation. The goal was to obtain a reliable numerical strategy that represents a reasonable compromise in terms of sufficient accuracy of the element characteristics and the computational costs. The results show the possibility of describing the composite action in a full sandwich panel. The achieved modelling approach will later be used for the optimization of TRC and UHPC panels in terms of minimizing the thickness, identifying the number and location of connectors, as well as evaluating varying anchorage Systems. T2 - IABSE conference - Structural engineering: Providing solutions to global challenges CY - Geneva, Switzerland DA - 23.09.2015 KW - Sandwich elements KW - Ultra-high performance concrete (UHPC) KW - Textile reinforced concrete (TRC) KW - Autoclaved aerated concrete (AAC) KW - Cellular lightweight concrete (CLC) KW - Finite element analysis (FEA) PY - 2015 SN - 978-3-85748-140-6 SP - 195 EP - 203 AN - OPUS4-34552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Miccoli, Lorenzo A1 - Garofano, A. A1 - Fontana, Patrick A1 - Müller, U. T1 - Experimental testing and finite element modelling of earth block masonry N2 - The current paper focuses on the determination of reliable numerical models of earth block masonry wallettes under different loading conditions. Uniaxial compression and diagonal compression tests were performed. Experimental behaviour was modelled with a non-linear model able to describe the cracking behaviour. The simplified approach based on macro-modelling shows a satisfactory accuracy and low computational costs. The results reproducing the uniaxial compression are in good correspondence with the post-elastic behaviour observed in the experimental campaign. The micro-modelling approach adopted to reproduce the shear behaviour, even with high computational cost, represents a suitable tool to predict the masonry collapse mechanism. KW - Earth block masonry KW - Uniaxial compression test KW - Diagonal compression test KW - Numerical modelling KW - Macro-modelling approach KW - Micro-modelling approach PY - 2015 DO - https://doi.org/10.1016/j.engstruct.2015.09.020 SN - 0141-0296 VL - 104 SP - 80 EP - 94 PB - Elsevier CY - Oxford AN - OPUS4-34553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Patrick T1 - Fire Performance of Epoxy Resin Modified with Melamine Poly(Metal Phosphate) T2 - FRPM 2015, 15th European Meeting on Fire Retardancy and Protection of Materials CY - Berlin, Germany DA - 2015-06-22 PY - 2015 AN - OPUS4-33632 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Müller, Patrick A1 - Bertin, Annabelle A1 - Schartel, Bernhard T1 - Hyperbranched Rigid Aromatic Phosphorus-Containing Flame Retardants for Epoxy Resins N2 - A rigid aromatic phosphorus-containing hyperbranched flame retardant structure is synthesized from 10-(2,5 dihydroxyphenyl)-10H-9-oxa- 10-phosphaphenanthrene-10-oxide (DOPO-HQ), tris(4-hydroxyphenyl)phosphine oxide (THPPO), and 1,4-terephthaloyl chloride (TPC). The resulting poly-(DOPO-HQ/THPPO-terephthalate) (PDTT) is implemented as a flame retardant into an epoxy resin (EP) at a 10 wt% loading. The effects on EP are compared with those of the monomer DOPO-HQ and triphenylphosphine oxide (OPPh3) as low molar mass flame retardants. The glass transition temperature, thermal decomposition, flammability (reaction to small flame), and burning behavior of the thermosets are investigated using differential scanning calorimetry, thermogravimetric analysis, pyrolysis combustion flow calorimetry, UL 94-burning chamber testing, and cone calorimeter measurements. Although P-contents are low at only 0.6 wt%, the study aims not at attaining V-0, but at presenting a proof of principle: Epoxy resinswith PDTT show promising fire performance, exhibiting a 25% reduction in total heat evolved (THE), a 30% reduction in peak heat release rate (PHRR) due to flame inhibition (21% reduction in effective heat of combustion (EHC)), and an increase in Tg at the same time. This study indicates that rigid aromatic hyperbranched polymeric structures offer a promising route toward multifunctional flame retardancy. KW - Hyperbranched KW - Aromatic KW - Phosphorus KW - Phosphine oxide KW - DOPO KW - Flame retardant KW - Xpoxy resin KW - Rigid PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525910 DO - https://doi.org/10.1002/mame.202000731 SN - 1439-2054 VL - 306 IS - 4 SP - 731 PB - Wiley AN - OPUS4-52591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, P. A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Ziegert, Ch. T1 - Partial safety factors for earth block masonry N2 - In the beginning of the 1980s earth building has undergone a renaissance, which nowadays leads to an increasing use of load-bearing earth constructions and in particular, earth block masonry. At present, there are no common structural standards according to the semi-probabilistic design concept, which is the state-of-the-art in European standards. A solid database is needed for the determination of the partial safety factor on the resistance side. Therefore, compressive strength tests were carried out with two types of earth blocks and two types of prefabricated earth mortar. The evaluation showed that the variation of the compressive strength was remarkably less than expected, which seems to indicate high quality standards of the components earth block and mortar with regard to industrial production. On the basis of these results and together with the reliability method, a partial safety factor for earth block masonry subjected to compression was determined. The main aim of the research was the development of a first valid database for material parameters of earth block masonry with particular regard to statistical characteristics. The results showed that a common calculation method for earth block masonry based on partial safety factors following the valid masonry construction standard is feasible. T2 - Terra Lyon 2016 - XIIth World Congress on Earthen Architecture CY - Lyon, France DA - 11.07.2016 KW - Safety factors KW - Earth block masonry KW - Compressive strength PY - 2016 SN - 979-10-96446-12-4 SP - 1 EP - 8 PB - Editions CRAterre CY - Villefontaine AN - OPUS4-45151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Meng, Birgit A1 - Fontana, Patrick A1 - Müller, Urs ED - Stephan, D. T1 - Nano-Gefügeanalytik als Optimierungsgrundlage für innovative Baustoffe - am Beispiel zementgebundener Baustoffe KW - Nanotechnologie KW - Analytik KW - Gefüge KW - Zement KW - Beton PY - 2007 SN - 3-89958-348-9 IS - 8 SP - 36 EP - 49 PB - Kassel University Press GmbH CY - Kassel AN - OPUS4-16363 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fontana, Patrick A1 - Müller, Urs A1 - Malaga, Katarina A1 - Lagerblad, B. A1 - Meng, Birgit T1 - Precast concrete facade elements with low embodied energy N2 - Concrete is by far the most common building material in the world. Due to its good durability it is widely used in building envelopes. One major part of the embodied energy in concrete comes from the production of Portland cement that consumes around 3,500 MJ energy per each ton of cement. Globally 2.6 billion tons of Portland cement is produced and the consumption is increasing. Since concrete will be used as main building material also in future construction, it is reasonable to develop concrete building components with lower embodied energy.Using the example of an ultra-high performance concrete (UHPC) façade element, it is demonstrated how the embodied energy can be reduced by application of hydrothermal curing. T2 - ENBRI Workshop - reaching the nearly zero-energy goal for buildings CY - Boras, Sweden DA - 04.04.2011 KW - UHPC KW - Betonfertigteil KW - Fassaden KW - Autoklavierung KW - Nachhaltigkeit PY - 2011 SN - 978-91-86622-51-0 SN - 0284-5172 SP - 1 EP - 8 AN - OPUS4-23628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falchi, L. A1 - Zendri, E. A1 - Müller, U. A1 - Fontana, Patrick T1 - The influence of water-repellent admixtures on the behaviour and the effectiveness of Portland limestone cement mortars N2 - Water-repellent mortars were prepared using different hydrophobic compounds as admixtures. Calcium and zinc stearates, silane/siloxane products (as liquid solution and powder) were mixed into limestone cement mortars for obtaining in-bulk water-repellent mortars suitable for building protection and resistant to the degrading action of water. The influences of the admixtures on the hydration and structure of the designed mortars were investigated by SEM, TG–DSC, FT-IR, XRD, and isothermal calorimetry. The effectiveness of these agents against water action was evaluated by using techniques and methods such as mercury intrusion porosimetry, water absorption tests and contact angle measurements. Siloxane products conveyed good water-repellent effectiveness, without strongly influencing the setting and hydration of the binder, while the zinc stearates slowed down the hydration reactions. KW - Water repellent admixtures KW - Portland limestone cement mortars KW - Hydration products KW - Pore size distribution KW - Siloxanes KW - Stearates PY - 2015 DO - https://doi.org/10.1016/j.cemconcomp.2015.02.004 SN - 0958-9465 SN - 1873-393X VL - 59 SP - 107 EP - 118 PB - Elsevier Ltd. CY - Barking, Essex AN - OPUS4-33169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falchi, L. A1 - Müller, U. A1 - Fontana, Patrick A1 - Balliana, E. A1 - Zendri, E. ED - Charola, A.E. ED - Rodrigues, J.D. T1 - Artificial weathering of water-repellent mortars suitable for restoration applications N2 - The study evaluates Portland limestone cement mortars, natural hydraulic lime mortars and pozzolan-lime mortars modified with water-repellent admixtures (metal soaps and siloxanes) for their use in the maintenance of historic buildings. The chemical-physical characteristics, the durability and the resistance to artificial weathering (exposure to UV light and artificial rain) were examined. The exposure conditions used in the ageing test were chosen in order to simulate outdoor environmental conditions, in particular the processes caused by UV-light and thermal shock induced by rain water. T2 - Hydrophobe VII - 7th International conference on water repellent treatment and protective surface technology for building materials CY - Lisbon, Portugal DA - 11.09.2014 KW - Water repellent admixtures KW - Mortars KW - Portland limestone cement KW - Natural hydraulic lime KW - Pozzolana-lime KW - Artificial weathering PY - 2014 SN - 978-972-49-2270-6 SP - 123 EP - 132 AN - OPUS4-32138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falchi, L. A1 - Müller, Urs A1 - Fontana, Patrick A1 - Izzo, F.C. A1 - Balliana, E. A1 - Biscontin, G. A1 - Zendri, E. T1 - Sustainability in the maintenance and protection of architectural surfaces: Innovative water-repellent pozzolana-lime mortars N2 - Water-repellent renders were studied in order to evaluate their suitability for restoration applications. Water repellent admixtures, such as powdered siloxane-based products and metal soaps (zinc and calcium stearates), were mixed with a pozzolana-lime binder similar to historical binders with hydraulic properties. The chemical-physical and structural properties, the effectiveness and the durability of the water-repellent mortars in different environmental conditions were studied. The influence of the water repellent admixtures was evaluated by FT-IR analyses, by testing the mechanical properties and the behaviour in presence of water. The durability of the water-repellent mortars was evaluated after the exposure to artificial weathering (UV-light and water) and to immersion/drying cycles in saturated sodium sulphate solution. The nature of the water-repellent admixtures influenced both the hydration reactions and the chemical-physical properties of the mortars resulting in different resistance to the weathering and to salt crystallization. T2 - Scienza e beni culturali XXX. 2014 - Quale sostenibilita' per il Restauro? CY - Brixen, Italy DA - 01.07.2014 KW - Water-repellent admixtures KW - Artificial weathering KW - Salt crystallization KW - Restoration mortars PY - 2014 SN - 978-88-95409-18-4 SN - 2039-9790 SP - 637 EP - 648 PB - Edizioni Arcadia Ricerche S.r.l. AN - OPUS4-31841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -