TY - CONF A1 - Suárez Ocano, Patricia T1 - I n situ monitoring of growing oxidation of the chemically complex alloy AlMo 0.5 NbTa 0.5 TiZr in the high temperature regime using synchrotron radiation Preliminary results N2 - The chemically complex alloys (CCAs) that contain mostly refractory elements (rCCAs), may be highly resistant to heat and load, which makes them attractive candidates for use at extremely high temperatures associated with many technological applications, e.g. aeroengine turbines. However, the field of CCAs, especially their resistance in harsh (oxidative) and hot environment is still young and not much experimental evidence for the understanding mechanisms in this regime is available, which the proposed study addresses. For safe use in structural applications, in addition to their mechanical performance, the environmental resistance of this alloy is also critical. Surface degradation can significantly decrease the mechanical resistance during high temperature exposure, leading to premature failure. The AlMo0.5NbTa0.5TiZr rCCA only contains Al as a protection candidate and it is composed of a coherent B2/bcc nanoscopic cube-on-cube interweave and an hexagonal phase. The evaluation of the oxidation process in the AlMo0.5NbTa0.5TiZr rCCA in the heat-treated state has not been assessed yet. The proposed study focusses on a deeper understanding of the formation mechanism and growth kinetics of oxides at high temperature in the AlMo0.5NbTa0.5TiZr rCCA using synchrotron radiation. Due to the envisaged high temperature structural applications, the alloy is evaluated in an oxidation environment specifically between 800°C and 1000°C. T2 - Large scale facility-based techniques SPP meeting CY - Online meeting DA - 02.11.2021 KW - Refractory chemically complex alloys KW - Oxidation behavior KW - Microstructural analysis KW - Synchrotron radiation PY - 2021 AN - OPUS4-54383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Suárez Ocano, Patricia T1 - Thermodynamic and microstructural stabilities at high temperatures and their effects on mechanical properties in an AlMo0.5NbTa0.5TiZr refractory high entropy superalloy N2 - Today’s industrial demands challenge the research and development sector to make advances in the design and properties of materials that can withstand harsh environments. The AlMo0.5NbTa0.5TiZr refractory high-entropy superalloy (RSA), with a remarkable morphological similarity to the γ/γ' microstructure of Ni-based superalloys and promising high-temperature compressive properties, has been considered as a candidate for structural applications. However, additional properties need to be investigated in order to assess the suitability of this alloy for high temperature applications. Therefore, this work investigates the thermodynamic and microstructural stabilities of the RSA at room temperature and between 900 and 1100 °C, and their influence on the mechanical properties. Although it is possible to improve the mechanical properties at 20 °C by tuning the cooling rate, long-term high temperature exposures lead to phase instabilities that negatively influence the creep behavior. N2 - Die heutigen industriellen Anforderungen erfordern Fortschritte bei Werkstoffdesign und -entwicklung, insbesondere für raue Umgebungen. Die hochentropische Refraktärsuperlegierung (RSA) AlMo0.5NbTa0.5TiZr, die eine bemerkenswerte morphologische Ähnlichkeit mit der γ/γ'-Mikrostruktur von Ni-Basis-Superlegierungen und vielversprechende Hochtemperatur-Druckeigenschaften aufweist, wurde als Kandidat für strukturelle Anwendungen erwägt. Weitere Eigenschaften müssen untersucht werden, um die Eignung dieser Legierung für Hochtemperaturanwendungen zu beurteilen. In dieser Arbeit werden die thermodynamischen und mikrostrukturellen Stabilitäten von RSA bei Raumtemperatur und zwischen 900 und 1100°C sowie deren Einfluss auf die mechanischen Eigenschaften untersucht. Obwohl es möglich ist, die mechanischen Eigenschaften bei 20 °C durch Abstimmung der Abkühlrate zu verbessern, führen langfristige Hochtemperaturexpositionen zu Phaseninstabilitäten, die das Kriechverhalten negativ beeinflussen. KW - Hochentropielegierung KW - Gefüge (Werkstoffkunde) KW - Mikrostruktur KW - Kriechen KW - Thermodynamische Stabilität KW - High entropy alloys KW - Microstructure KW - Creep KW - Thermodynamic stability PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:hbz:294-108415 DO - https://doi.org/10.13154/294-10841 SP - 1 EP - 170 CY - Bochum AN - OPUS4-59929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Suárez Ocano, Patricia A1 - Zaiser, E. A1 - Hesse, René A1 - Többens, D. M. A1 - Glatzel, U. A1 - Manzoni, Anna Maria T1 - Controlling Lattice Misfit and Creep Rate Through the γ' Cube Shapes in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy with Hf and W Additions N2 - Trace elements play an important role in the fine-tuning of complex material properties. This study focuses on the correlation of microstructure, lattice misfit and creep properties. The compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 (in at. %) was tuned with high melting trace elements Hf and W. The microstructure consists of a γ matrix, γ' precipitates and the Heusler phase and it is accompanied by good mechanical properties for high temperature applications. The addition of 0.5 at.% Hf to the Al10Co25Cr8Fe15Ni36Ti6 alloy resulted in more sharp-edged cubic γ′ precipitates and an increase in the Heusler phase amount. The addition of 1 at.% W led to more rounded γ′ precipitates and the dissolution of the Heusler phase. The shapes of the γ' precipitates of the alloys Al9.25Co25Cr8Fe15Ni36Ti6Hf0.25W0.5 and Al9.25Co25Cr8Fe15Ni36Ti6Hf0.5W0.25, that are the alloys of interest in this paper, create a transition from the well-rounded precipitates in the alloy with 1% W containing alloy to the sharp angular particles in the alloy with 0.5% Hf. While the lattice misfit has a direct correlation to the γ' precipitates shape, the creep rate is also related to the amount of the Heusler phase. The lattice misfit increases with decreasing corner radius of the γ' precipitates. So does the creep rate, but it also increases with the amount of Heusler phase. The microstructures were investigated by SEM and TEM, the lattice misfit was calculated from the lattice parameters obtained by synchrotron radiation measurements. KW - High entropy alloy KW - Lattice misfit KW - Creep KW - Transmission electron microscopy KW - X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565655 DO - https://doi.org/10.1007/s44210-022-00009-1 SP - 1 EP - 9 PB - Springer AN - OPUS4-56565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Manzoni, Anna Maria A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Laplanche, G. A1 - Agudo Jácome, Leonardo T1 - Influence of cooling rate on the microstructure and room temperature mechanical properties in the refractory AlMo0.5NbTa0.5TiZr superalloy N2 - Refractory chemically complex alloys with bcc-based microstructures show great potential for high-temperature applications but most of them exhibit limited room-temperature ductility, which remains a challenge. One such example is the AlMo0.5NbTa0.5TiZr alloy, mainly consisting of a nano-scaled structure with an ordered B2 matrix and a high-volume fraction of aligned cuboidal and coherently embedded A2 precipitates. This work aims to investigate how the cooling rate after hot isostatic pressing of the AlMo0.5NbTa0.5TiZr alloy affects its microstructure and its resulting hardness and fracture toughness at room temperature. A slow cooling rate of 5 °C/min leads to a coarse microstructure consisting of aligned slabs (mean A2 precipitate ≈ 25 nm) with a nanohardness of about 8 GPa. In contrast, after the fastest cooling rate (30 °C/min), the A2 precipitates become more cubic with an edge length of ≈ 16 nm, resulting in an increase in nanohardness by 10 %. The fracture toughness is roughly independent of the cooling rate and its mean value (≈ 4.2 MPa∙m1/2) resembles that of some B2 intermetallics and other A2/B2 alloys. As the lattice misfit between the A2 and B2 phases is known to play a key role in microstructure formation and evolution, its temperature dependence between 20 and 900 °C was investigated. These findings offer insights into the evolution of the microstructure and room-temperature mechanical properties of the AlMo0.5NbTa0.5TiZr alloy, which could help the development of advanced chemically complex alloys. KW - High entropy alloy KW - Lattice misfit KW - Scanning electron microscopy KW - Transmission electron microscopy KW - X-ray diffraction KW - Refractory alloy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572809 DO - https://doi.org/10.1016/j.jallcom.2023.169871 SN - 0925-8388 VL - 949 SP - 169871 PB - Elsevier B.V. AN - OPUS4-57280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gadelmeier, C. A1 - Agudo Jácome, Leonardo A1 - Suárez Ocano, Patricia A1 - Glatzel, U. T1 - Effect of stacking fault energy (SFE) of single crystal, equiatomic CrCoNi and Cantor alloy on creep resistance N2 - Compared to mechanisms like solid solution strengthening, the stacking fault energy (SFE) should be considered as a further factor that influences the material properties. The effect of SFE of alloys or individual elements on strength and resistance can vary considerably. In the high-temperature regime above 700 ◦C, there are still significant gaps in the knowledge about the effect of the SFE on the mechanical properties of single-phase alloys. The effect of SFE on creep resistance of two face-entered cubic equiatomic medium and high entropy alloys, CrCoNi and CrMnFeCoNi, respectively, is evaluated to fill parts of these gaps. Using the Bridgman solidification process, the alloys were produced as single crystals and crept under vacuum at 700 ◦C up to 1100 ◦C. This work shows a significant impact of the lower SFE of CrCoNi on the creep behavior compared to the results of previous investigations of CrMnFeCoNi. The creep resistance of the former is higher over the complete temperature range. At very high temperatures, the strengthening effect of the stacking faults is significantly present. The formation of tetragonal stacking faults and extended dislocation nodes can be identified as the reason for this effect. KW - Medium entropy alloy KW - MEA KW - HEA KW - Single crystal KW - CrCoNi PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602620 DO - https://doi.org/10.1016/j.msea.2024.146779 SN - 0921-5093 VL - A 908 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-60262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kingsbery, P. A1 - Manzoni, Anna Maria A1 - Suárez Ocano, Patricia A1 - Többens, D. M. A1 - Stephan-Scherb, C. T1 - High‐temperature KCl‐induced corrosion of high Cr and Ni alloys investigated by in‐situ diffraction N2 - High‐temperature KCl‐induced corrosion in laboratory air was observed in situ utilizing X‐ray diffraction. High Cr‐containing model alloys (Fe‐13Cr, Fe‐18Cr‐12Ni, and Fe‐25Cr‐20Ni) were coated with KCl and exposed to dry air at 560°C. KCl‐free alloys were studied in the equivalent atmosphere as a reference. After exposure to KCl‐free environments, all alloys showed the formation of very thin oxide layers, indicating good corrosion resistance. In contrast, KCl‐bearing alloys showed distinct damage after exposure. KW - Corrosion KW - In-situ diffraction KW - High-temperature corrosion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600831 DO - https://doi.org/10.1002/maco.202314224 SN - 0947-5117 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-60083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocaño, Patricia A1 - Agudo Jácome, Leonardo T1 - Oxidation Behavior of the AlMo0.5NbTa0.5TiZr Chemically Complex Alloy N2 - The chemically complex alloys that contain mostly refractory elements (rCCAs), may be highly resistant to heat and load, which makes them attractive candidates for use at extremely high temperatures associated with technological applications such as aeroengine turbines. However, the oxidation behavior remains an emerging field within the CCA community. The fully heat treated AlMo0.5NbTa0.5TiZr rCCA contains a dual-phase microstructure that resembles the γ/ γ’ pattern of the well-known Ni-base superalloys, however with a continuous Al-Zr-Ti-rich B2 ordered matrix embedding Mo-Nb-Ta-rach bcc precipitates. The question thus arises what is the oxidation behavior of this rCCA alloy? In this study, this question is addressed via in situ and ex situ X-ray diffraction (XRD) in dry and humid air in the 800–1000 °C regime. Electron microscopic investigations complement the findings. In situ synchrotron experiments were carried out at the KMC2 beamline of the Helmholtz Zentrum Berlin (HZB), with a wavelength of 1.5418 Å at 800 and 950 °C under dry and humid (≈ 40% rH, laboratory air) air for 12 h. Scanning and transmission electron microscopy was performed before and after exposure to spatially resolve the scale development ex situ. In general, 12 h exposure led to an oxide scale which internal oxidation reaches several tens of microns, and which is dominated by Zr-, Ti- and Mo-containing oxides although aluminum oxide was also always present. Main differences are observed between temperatures, while the humidity played a lesser role. T2 - International Conference on High Entropy Materials (ICHEM) 2023 CY - Knoxville, TN, USA DA - 18.06.2023 KW - High entropy superalloy KW - High temperature oxidation KW - In situ synchrotron diffraction KW - Electron microscopy PY - 2023 AN - OPUS4-63857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia T1 - Incipient Oxidation and Deformation Mechanisms of the Chemically Complex Alloy AlMo 0.5 NbTa 0.5 TiZr in the high temperature regime N2 - The development of refractory chemically complex alloys (rCCAs) has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy. It was named as “high entropy superalloy” as it resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. However, the continuous phase in Ni Base alloys is an fcc solution and the cuboidal γ’ precipitates present the L12 intermetallic structure. On the opposite, this CCA has a reversed microstructure where the continuous matrix is formed by an ordered B2 phase which contains cuboidal precipitates of a disordered BCC phase. Some of the most importat results of microstructural analysis, creep test and oxidation are presented in the following work. The as-cast sample shows a bcc/B2 structure with hexagonal phase precipitates in amorphous state whereas the annealed sample also shows a combination of these phases but with larger bcc precipitates and a fully crystallized hexagonal intermetallic. It was found that porosity was higher in the annealed samples (Kinkerdall effect) and the hardness was higher in samples with faster cooling rate due smaller nanostructure. Norton plots show both diffusion and dislocation controlled deformation, and it was found different kinetics between dry and humid air oxidation with the presence of spallation. T2 - CONVEMI 2021 (Venezuelan congress of microscopy and microanalysis) CY - Online meeting DA - 29.10.2021 KW - High entropy superalloys KW - Mechanical properties KW - Oxidation behavior KW - Microstructural analysis PY - 2021 AN - OPUS4-54382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocaño, Patricia A1 - Agudo Jácome, Leonardo T1 - Creep degradation of the high entropy superalloy AlMo0.5NbTa0.5TiZr N2 - The refractory high entropy superalloy (RSA) AlMo0.5NbTa0.5TiZr was the first of a class, with a dual-phase microstructure that resembles that of γ/γ’ in Ni-base superalloys), and the open question whether it performs better as structural alloy under high temperature (HT) applications. Here, we address the HT creep behavior and its associated microstructural degradation of this RSA. The material was produced by arc-melting, heat treatment in argon (24 h @ 1400 °C + 4 h hot isostatic pressure @ 1370 °C & 170 MPa). Interrupted vacuum creep tests were performed at 900-1100 °C and 30-120 MPa. Scanning (S) and transmission (T) electron microscopy (EM) were used to reveal degradation mechanisms. At 1100 °C (Fig.1, middle), the dual A2/B2 microstructure coarsens and partially transforms into a Zr-Al-rich phase (red arrow). An additional external load pronounces directional coarsening. Results are further discussed on the base dislocation and additional damage mechanisms. T2 - International Conferende on Strength of Materials (ICSMA) 2022 CY - Metz, France DA - 26.06.2022 KW - High entropy superalloy KW - Rrafting KW - Dislocation creep KW - Phase transformation PY - 2022 AN - OPUS4-63856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia T1 - Microstructural characterization of the AlMo 0.5 NbTa 0.5 ZrTi refractory complex concentrated alloy N2 - A set of some unexpected and interesting microstructures has put the so-called complex concentrated alloys (CCAs) in the eye of the scientific community and the AlMo0.5NbTa0.5TiZr refractory (r)CCA, aimed at substituting Ni-base superalloys in gas turbine applications, belongs to this alloy family. The AlMo0.5NbTa0.5TiZr rCCA was studied by SEM, EDX, EBSD and TEM, showing the presence of a nanoscopic basket-wave structure inside the grains, with two BCC phases. Additionally, thermodynamic calculations on the AlMo0.5NbTa0.5TiZr alloy were done with two different proprietary databases that anticipate two BCC-disordered phases with distinct constitutions as well as an HCP phase. T2 - Symposium on Advanced Mechanical and Microstructural Characterization of High-Entropy Alloys CY - Bochum, Germany DA - 03.02.2020 KW - High Entropy Alloy KW - EBSD KW - Microstructure Characterization PY - 2020 AN - OPUS4-50729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia T1 - Creep Properties of the Refractory Chemically Complex AlMo 0.5 NbTa 0.5 TiZr Alloy N2 - The development of refractory CCAs has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy, which resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. The aim of this work is to evaluate the alloy’s mechanical behavior under tension in the temperature range 800-1000°C, by applying creep tests under vacuum (excluding oxidation effects). Some little temperature influence on minimum creep rate @ 1000 and 1100 °C was found and at a first glance, and Norton plots shows that deformation is probably both diffusion and dislocation controlled. However, further work is needed to stablish deformation and degradation micro mechanisms in the studied creep regime. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - Creep behavior KW - Chemically complex alloy KW - Microstructure PY - 2021 AN - OPUS4-53389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia T1 - High temperature and low stress creep behavior of the refractory chemically complex alloy AlMo 0.5 NbTa 0.5 TiZr N2 - The refractory chemically complex alloy (rCCA) AlMo0.5NbTa0.5TiZr, with a density of 7.4 g/cm3, shows a compressive ultimate strength of 772 MPa at 1000 °C, comparatively surpassing Ni-base and other rCCAs. Its dual-phase microstructure, with a high volume fraction (≈ 62%) of cuboidal and plate-like particles coherently embedded in a continuous matrix, resembles the well-known pattern of the γ/γ" in Ni-base superalloys. Its developers have thus implied that it could stand as structural alloy for high temperature (HT) applications. Here, we report the HT creep properties and the underlying microstructural changes of the rCCA AlMo0.5NbTa0.5TiZr to propose deformation and degradation micromecanisms for this regime. The material was produced by arc-melting and subsequently heat treated in argon: at 1400 °C for 24 h plus a hot isostatic pressure treatment at 1370 °C and 170 MPa for 4 h, with a cooling rate of 10 K/min. Miniaturized tensile specimens (≈ 28 x 7 x 2 mm) were cut and polished to a quality of 1 μm. Creep tests were conducted in vacuum in the respective temperature and stress range 800-1200 °C and 30-120 MPa. For observation, thin slices were extracted from the gauge length, away from the fracture surface, grinded to a thickness of 100 μm, and electropolished to electron transparency. The microstructure was observed on the electropolished specimens using scanning (S) as well as transmission (T) electron microscopy (EM). The Norton plot gives Norton exponents of about 3.1 and 3.2 for temperatures of 1000 and 1100 °C, respectively. Curiously, creep rate minima are very close for a stress level of 30. The starting microstructure reflects a macroscopically lean coarse grain structure and a microscopically fine-meshed basketweave structure with coherency dislocations only around coarsened particles usually close to subgrain boundaries. Results are discussed on the base of variations of this starting microstructure after interrupted and ruptured creep tests. T2 - 15th International Conference on Creep and Fracture of Engineering Materials and Structures CY - Online meeting DA - 14.06.2021 KW - Creep behavior KW - Chemically complex alloy KW - Cow stress PY - 2021 AN - OPUS4-53388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia T1 - Effect of the heat treatment in the microstructure of a refractory chemically complex alloy N2 - A set of some unexpected and interesting microstructures has put the so-called complex concentrated alloys (CCAs) in the eye of the scientific community. The AlMo0.5NbTa0.5TiZr refractory (r)CCA, aimed at substituting Ni-base superalloys in gas turbine applications, belongs to this alloy family. After a two-stage heat treatment, this rCCA morphologically resembles the typical a two-phase microstructure of the latter. The objective of this work consists in determining the effect of the two stages of the heat treatment on the microstructure of the AlMo0.5NbTa0.5TiZr alloy to eventually improve it in terms of homogeneity and porosity. T2 - Third International Conference on High Entropy Materials (2020) CY - Berlin, Germany DA - 27.09.2020 KW - Annealing KW - Hot isostatic pressing KW - Refractory chemically complex alloy KW - Microstructure PY - 2020 AN - OPUS4-53386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Suárez Ocano, Patricia A1 - Agudo Jácome, Leonardo A1 - Lopez-Galilea, I. A1 - Darvishi Kamachali, Reza A1 - Fries, S. G. T1 - Data regarding the experimental findings compared with CALPHAD calculations of the AlMo0.5NbTa0.5TiZr refractory high entropy superalloy N2 - This contribution contains the raw data used to compare experimental results with thermodynamic calculations using the CALPHAD method, which is related to the research article “The AlMo0.5NbTa0.5TiZr refractory high entropy superalloy: experimental findings and comparison with calculations using the CALPHAD method” [1] , and therefore this article can be used as a basis for interpreting the data contained therein. The AlMo0.5NbTa0.5TiZr refractory superalloy was characterized in the cast and annealed condition (1400 °C for 24 h) in order to measure grain size and to identify and measure the size and area fraction of the phases present. The raw data of this article include X-ray diffraction (XRD) measurements, microstructural characterization by scanning and transmission electron microscopy (SEM and TEM), and elemental analysis by energy dispersive X-ray spectroscopy (EDX). XRD includes the determination of phases and the lattice parameters (A2, B2, and hexagonal structure). Microstructural analysis by scanning and transmission electron microscopy includes (1) identification of composition, size, and volume fraction of the present phases and (2) determination of grain size. Based on these experimental data, it is possible to identify similarities and discrepancies with the data calculated using the CALPHAD method for the alloy under study in Ref. [1] , which provides the basis for better and more efficient development of reliable databases. KW - Microstructural characterization KW - Refractory high entropy alloys KW - Scanning electron microscopy KW - Transmission electron microscopy PY - 2023 DO - https://doi.org/10.17632/d742ccty5f.4 PB - Mendeley Data CY - Oxford, UK AN - OPUS4-56861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Agudo Jácome, Leonardo A1 - Lopez-Galilea, I. A1 - Darvishi Kamachali, Reza A1 - Fries, S. G. T1 - Data regarding the experimental findings compared with CALPHAD calculations of the AlMo0.5NbTa0.5TiZr refractory high entropy superalloy N2 - This contribution contains the raw data used to compare experimental results with thermodynamic calculations using the CALPHAD method, which is related to the research article “The AlMo0.5NbTa0.5TiZr refractory high entropy superalloy: experimental findings and comparison with calculations using the CALPHAD method” [1] , and therefore this article can be used as a basis for interpreting the data contained therein. The AlMo0.5NbTa0.5TiZr refractory superalloy was characterized in the cast and annealed condition (1400 °C for 24 h) in order to measure grain size and to identify and measure the size and area fraction of the phases present. The raw data of this article include X-ray diffraction (XRD) measurements, microstructural characterization by scanning and transmission electron microscopy (SEM and TEM), and elemental analysis by energy dispersive X-ray spectroscopy (EDX). XRD includes the determination of phases and the lattice parameters (A2, B2, and hexagonal structure). Microstructural analysis by scanning and transmission electron microscopy includes (1) identification of composition, size, and volume fraction of the present phases and (2) determination of grain size. Based on these experimental data, it is possible to identify similarities and discrepancies with the data calculated using the CALPHAD method for the alloy under study in Ref. [1] , which provides the basis for better and more efficient development of reliable databases. KW - Transmission electron microscopy KW - Scanning electron microscopy KW - Microstructural characterization KW - Refractory high entropy alloys PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568009 DO - https://doi.org/10.1016/j.dib.2022.108858 SN - 2352-3409 VL - 46 SP - 1 EP - 19 PB - Elsevier CY - Amsterdam AN - OPUS4-56800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Lopez-Galilea, I. A1 - Darvishi Kamachali, Reza A1 - Roik, J. A1 - Agudo Jácome, Leonardo T1 - The AlMo0.5NbTa0.5TiZr refractory high entropy superalloy: Experimental findings and comparison with calculations using the CALPHAD method N2 - Detailed microstructural characterization of the AlMo0.5NbTa0.5TiZr refractory high entropy superalloy in the as-cast state is reported for first time and compared with the state annealed at 1400 oC for 24 h. The former shows a dendritic structure, with a mixture of A2/B2 phases < 20 nm in both the dendritic and interdendritic regions. A mostly amorphous phase, rich in Al and Zr, is found within the interdendritic region. The annealed state reproduced the combination of A2/B2/Al-Zr-rich phases reported previously. Calculations from two relevant ThermoCalc databases were compared with the experimental results. Equilibrium calculations were compared with results for the annealed alloy, whereas solidification paths calculated using Scheil-Gulliver model were used for comparison with the as-cast alloy. A previously hypothesized spinodal decomposition during cooling as the mechanism responsible for the patterned A2/B2 microstructure is confirmed via the CALPHAD calculations, pointing to its use as an efficient design tool for such alloys. Finally, the comparison between the experimental and computational findings allowed better understanding the solidification path and equilibrium stability of this alloy, giving a base to make better decisions on the field of new refractory superalloy design. KW - CALPHAD database analysis KW - Refractory superalloys KW - Chemically complex alloy KW - Characterization KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545906 DO - https://doi.org/10.1016/j.matdes.2022.110593 SN - 1873-4197 VL - 217 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-54590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia T1 - Thermodynamic study of a refractory complex concentrated alloy using the CALPHAD method N2 - Introduction/purpose: Multi-principal-element alloys (MPEAs), also known as complex concentrated alloys (CCAs), have recently come to the attention of the scientific community due to some interesting and unexpected microstructures, and their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. Methods: In this contribution, the CALPHAD method is used to calculate phase equilibria for the AlMo0.5NbTa0.5TiZr CCA in the presence and absence of oxygen. Equilibrium phase amount evolution with temperature and Scheil Model for solidification (e.g. Fig.1a and Fig.1b, respectively) are analyzed, which are obtained using the databases TCNI9 and TTNI7 and the Gibbs energy minimizer in the Thermo-Calc software. Results: The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. Results obtained by both databases, as well as discrepancies between property phase and Scheil approaches are discussed on the base of experimental results. Conclusions: A modeling tool is used to support alloy characterization and development, providing also the possibility to feedback information to improve existing thermodynamic databases. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - CALPHAD databases analysis KW - Thermodynamic analysis KW - Complex concentrated alloy (CCA) PY - 2019 AN - OPUS4-49345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suarez Ocano, Patricia T1 - Influence of heat-treatment-induced microstructural evolution on the Low Cycle Fatigue behavior of 316L stainless steel fabricated by Laser Powder Bed Fusion N2 - Additive manufacturing, particularly the laser powder bed fusion (PBF-LB/M) process, has gained significant attention in recent years due to its ability to produce complex geometries with enhanced mechanical properties. Among the various materials used, 316L stainless steel is highly favored for cyclically loaded components due to its exceptional mechanical strength, high-temperature performance, and corrosion resistance, making it widely applicable across various industries. 316L SS fabricated by PBF-LB/M (PBF-LB/M/316L) exhibits a unique hierarchical microstructure, with high density of low-angle grain boundaries (LAGBs), nano-dispersed silicates, chemical micro-segregations, and solidification-induced cellular structures. Particularly, the submicron-sized cellular features enriched with chromium (Cr) and molybdenum (Mo), along with high dislocation densities, contribute to a superior strength-ductility balance compared to conventionally manufactured 316L SS. The dispersed silicate particles act also as a strengthening phase, impeding dislocation movement and enhancing plastic deformation resistance. This study explores the effect of heat treatments on the low-cycle fatigue (LCF) behavior of PBF-LB/M/316L at room temperature (RT) and 600 °C. First, three heat treatment conditions were applied to the as-built material: 450 °C for 4 hours (HT450/4), 800 °C for 3 hours (HT800/3), and 900 °C for 1 hour (HT900/1) to investigate their influence on microstructural evolution. Microstructural analysis revealed that the HT450/4 condition preserved the cellular structure with high dislocation density, while the HT800/3 condition showed partial dissolution of cells together with reduction in segregated elements along the cell walls and a reduced dislocation density. The HT900/1 condition resulted in complete segregation and cellular structure dissolution with comparable dislocation density to HT800/3 while maintaining the crystallographic texture and grain morphology. Intermetallic χ phase was mostly observed at the grain boundaries in HT800/3, but not in HT900/1. Fully reversed LCF tests were conducted under strain-controlled conditions with a strain amplitude of 0.8 %. Tests were interrupted at specific intervals to analyze the interaction between hierarchical microstructural features and deformation mechanisms in the three heat-treated conditions. Due to the pronounced dislocation cell structures and elemental segregation, the microstructure of the HT450/4 condition significantly impact deformation and damage mechanisms during cyclic loading, which in turn, differ from the conventional produced counterparts. The results provide insights into the relationship between microstructural features and fatigue performance, highlighting key deformation and failure mechanisms under cyclic loading. T2 - FEMS 2025 EUROMAT 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 14.09.2025 KW - Additive manufacturing KW - 316L stainless steel KW - Heat treatments KW - Low Cycle Fatigue KW - Microstructure PY - 2025 AN - OPUS4-64238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferrari, Bruno A1 - Fantin, Andrea A1 - Said, D. A1 - Fitch, A. N. A1 - Suárez Ocano, Patricia A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Kromm, Arne A1 - Darvishi Kamachali, Reza A1 - Bruno, Giovanni A1 - Evans, Alexander A1 - Requena, G. A1 - Agudo Jácome, Leonardo A1 - Serrano Munoz, Itziar T1 - The impact of scanning strategy on cell structures in PBF-LB/M/IN718: an in situ synchrotron x-ray diffraction study N2 - In additive manufacturing, any change of the process parameters, such as scanning strategy, directly affects the cooling rates, heat accumulation, and overall thermal history of the build. Consequently, parts built with different process parameters tend to have different levels of crystallographic texture, residual stress, and dislocation density. These features can influence the properties of the material and their development during post-processing operations. In this study, IN718 prisms were built by laser powder bed fusion (PBF-LB/M) using two different scanning strategies (continuous 67° rotations around the build direction, ROT, and alternating 0°/67° scans, ALT) to provide two different as-built conditions. In situ time-resolved synchrotron diffraction was performed during a solution heat treatment at 1027 °C for 1 h. Ex situ scanning electron microscopy was used to support and complement the in situ observations. An approach to quantify the effect of elemental microsegregation at the cell walls is developed based on the deconvolution of asymmetric γ-nickel matrix peaks. Following this approach, the scanning strategies are shown to affect the as-built fraction of cell walls in the material, resulting in a difference of approximately 5 %, in weight fraction, between ROT and ALT (19 % vs. 24 %, respectively). This microsegregation was observed to be rapidly homogenized during the heating ramp, and no significant changes to the peak shape in the γ peaks occurred during the isothermal part of the heat treatment, regardless of the scanning strategy. KW - Additive manufacturing KW - Inconel 718 KW - Synchrotron x-ray diffraction KW - Heat treatment KW - Laser powder bed fusion KW - Cellular microstructure PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650958 DO - https://doi.org/10.1016/j.jmrt.2025.11.214 SN - 2238-7854 VL - 41 SP - 593 EP - 608 PB - Elsevier B.V. AN - OPUS4-65095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evans, Alexander A1 - Schröder, Jakob A1 - Pirling, T. A1 - Ulbricht, Alexander A1 - Suárez Ocaño, Patricia A1 - Bruno, Giovanni T1 - Resolving the Subsurface Residual Stress Maximum in Laser Powder Bed-Fused 316L Stainless Steel by Diffraction-Based Analysis N2 - Laser powder bed fusion (PBF-LB/M) is a metal additive manufacturing process. Due to the complex nature of the layer-wise, repeated heating and cooling cycles, it tends to generate high-magnitude residual stresses. If not correctly understood and mitigated through in- or post-process approaches, these residual stresses can be detrimental as they are often tensile at the surface. However, determining the magnitude and location of peak tensile residual stresses is not trivial as they are often located subsurface. This work focuses on determining the magnitude and location of these deleterious tensile residual stresses in a PBF-LB/316L specimen. Two diffraction-based Methods are used to reveal the relationship between the residual stresses and the underlying microstructure. On the one hand, high spatial resolution Neutron diffraction is used to determine triaxial stresses from the bulk to a depth of 0.15 mm. On the other hand, laboratory X-ray diffraction coupled with electrolytical layer removal allows the biaxial residual stress depth profile to be probed from the surface to a depth of about 0.6 mm. The results show a good agreement between the two methods. The peak residual stress is shown to be 500 MPa, which appears as a plateau between 0.08 and 0.35 mm in depth. KW - Residual stress KW - Diffraction KW - Laser Powder Bed Fusion KW - 316L KW - Additive manufacturing KW - Microstructure KW - AGIL PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652138 DO - https://doi.org/10.1007/s11837-025-07719-y SN - 1543-1851 VL - 77 IS - 12 SP - 9726 EP - 9737 PB - Springer Nature AN - OPUS4-65213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Agudo Jácome, Leonardo T1 - Thermodynamic study of a refractory complex concentrated alloy (rCCA) using the CALPHAD method N2 - Multi-principal-element alloys (MPEAs), have recently come to the attention of the scientific community due to their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Chemically Complex Alloy KW - CALPHAD KW - Electromicroscopy PY - 2019 AN - OPUS4-50730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocaño, Patricia A1 - Ávila Calderón, Luis A1 - Agudo Jácome, Leonardo A1 - Rehmer, Birgit A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Effect of 700–900 °C heat treatments and room and high temperature tensile deformation on the microstructure of laser powder bed fused 316L stainless steel N2 - The effect of post-processing heat treatments on the hierarchical microstructure evolution and mechanical strength of the austenitic stainless steel 316L produced by laser powder bed fusion has been investigated. Heat treatments between 700 and 900 ◦C and 0.5 to 3 h, were applied to samples treated at 450 ◦C for 4 h. The results showed a stable microstructure at all studied temperatures and times in terms of grain size, morphology, aspect ratio, density of low-angle grain boundaries, and texture. However, temperature and time promoted the diffusion of segregated elements together with a reduction in dislocation density and disappearance of the cellular structure. This was associated with a reduction in hardness and tensile proof strength at both room and high temperature. In addition, microstructural characterization coupled with thermodynamic CALPHAD-based equilibrium calculations showed that the formation of carbides and intermetallic phases was already visible after annealing at 800 ◦C for 3 hours, although these intermetallics did not affect the tensile properties at this level. Analysis of the microstructure evolution after tensile deformation showed differences in the deformation mechanisms at room and high temperature, with twinning and martensitic transformation occurring at room temperature, the latter not widely reported for additively manufactured 316L. Finally, comparisons with similar materials produced under comparable conditions showed differences in the tensile properties, attributed to differences in chemical composition and the associated presence of stacking faults in the undeformed state. KW - Additive manufacturing KW - 316L stainless steel KW - Heat treatments KW - Tensile properties KW - Microstructure PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632471 DO - https://doi.org/10.1016/j.msea.2025.148469 SN - 0921-5093 VL - 939 SP - 1 EP - 24 PB - Elsevier CY - Amsterdam AN - OPUS4-63247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suarez Ocano, Patricia T1 - Exploring the impact of heat treatment on room and high temperature strength of 316L stainless steel fabricated by PBF-LB N2 - Laser Powder Bed Fusion (PBF-LB/M) enables the fabrication of 316L stainless steel components with superior strength and intricate geometries. The alloy PBF-LB/M/316L features a fully austenitic microstructure with hierarchical characteristics— such as fine dislocation structures, segregated elements, low-angle grain boundaries, and nano-dispersed silicates—that enhance strength and ductility. Additionally, it includes metallurgical defects and residual stresses. Apart from process control, heat treatments (HTs) are used to tailor the microstructure for specific loading conditions. This study investigate the effects of post-processing HTs on the hierarchical microstructure and tensile properties of PBF-LB/M/316L at room and high temperature. The heat treatments, ranging from 400 °C to 900 °C for 1 to 4 hours, focus on sub-recrystallization temperatures to preserve the microstructural hierarchy. The HTs applied had minimal impact on the grain shape, size, or texture of PBF-LB/M/316L. However, significant modifications occurred in the solidification cellular substructure after HTs at 800 °C and 900 °C, when compared to a heat-treated condition at 450 °C. HTs at 800 °C notably decreased dislocation density and enlarged cellular structures, though they remained partially intact. After 1 hour at 900 °C, the cellular substructure dissipated, correlating with a further reduction in dislocation density. These microstructural changes resulted in a decreased yield strength and increased work hardening capacity at both room and high temperature, highlighting the critical link between HT parameters, microstructural evolution, and mechanical performance. T2 - The 20th International Conference on Strength of Materials (ICSMA 20) CY - Kyoto, Japan DA - 02.06.2025 KW - Additive manufacturing KW - 316L stainless steel KW - Heat treatments KW - Tensile properties KW - Microstructure PY - 2025 AN - OPUS4-63914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia T1 - Effect of heat treatment on the hierarchical microstructure and properties of 316L stainless steel produced by Laser Powder Bed Fusion (PBF-LB/M). N2 - Laser Powder Bed Fusion (PBF-LB/M) of AISI 316L stainless steel has gained popularity due to its exceptional capacity to produce complex geometries and hierarchical microstructures, which can increase the yield strength while maintaining good ductility. Nevertheless, owing to high thermal gradients encountered during the process, the as printed 316L stainless steel often exhibit microstructural heterogeneities and residual stresses, which can limit its performance in demanding environments. Hence, employing heat treatments which balance the reduction of residual stresses while retaining improved static strength may be beneficial in various scenarios and applications. This study investigates the impact of post-processing heat treatments on the microstructure of 316L stainless steel manufactured via PBF-LB/M, along with its correlation with micro-hardness properties. To this end, 6 different heat treatments, i.e., 450 °C for 4h, 700 °C for 1h, 700 °C for 3h, 800 °C for 1h, 800 °C for 3h, and 900 °C for 1h, were applied to different specimens and Vickers hardness measurements (HV1) were performed in all states. At 800 °C, although the cellular structure appears to be retained, there is an observable increase in cellular size. However, while treatments exceeding 900 °C indicate no significant grain growth compared to other conditions, the cellular structure is entirely dissolved, which leads to a reduced Vickers hardness. The effect of the heat treatments on other microstructural features such as grain size and morphology, melt pool boundaries (MPB), crystallographic texture, chemical segregation, dispersoids and phase stability are also discussed in the present work T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Heat treatment KW - Microstructure PY - 2024 AN - OPUS4-60304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -