TY - JOUR A1 - Liu, Yanchen A1 - Guilherme Buzanich, Ana A1 - Alippi, Paola A1 - Montoro, Luciano A. A1 - Lee, Kug‐Seung A1 - Jeon, Taeyeol A1 - Weißer, Kilian A1 - Karlsen, Martin A. A1 - Russo, Patrícia A. A1 - Pinna, Nicola T1 - FeNb 2 O 6 as a High‐Performance Anode for Sodium‐Ion Batteries Enabled by Structural Amorphization Coupled with NbO 6 Local Ordering N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-performance sodium storage anode. The presence of iron triggers the loss of long-range order through disorder of the FeO6 octahedra local structure, subsequently allowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites for pseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation. KW - SIB KW - XAS KW - Sodium-ion Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654931 DO - https://doi.org/10.1002/adma.202504100 SN - 0935-9648 VL - 37 IS - 46 SP - 1 EP - 13 PB - Wiley AN - OPUS4-65493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Liu, Yanchen A1 - de Oliveira Guilherme Buzanich, Ana A1 - Alippi, Paola A1 - Lee, Kug-Seung A1 - Jeon, Taeyeol A1 - Weißer, Kilian A1 - Karlsen, Martin A. A1 - Russo, Patrícia A. A1 - Pinna, Nicola T1 - FeNb2O6 as a high-performance anode for sodium-ion batteries enabled by structural amorphization coupled with NbO6 local ordering. N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes materials for lithium-ion batteries. Currently, they are also emerging as promising anodes for sodium-ion batteries due to their low volume change and safety. However, the potential electrochemical performance in sodium energy storage is not fully achieved, primarily due to the larger radius of the Na+-ions. Here, we report for the first time an iron niobate with columbite structure as a high-performance sodium storage anode. The presence of iron in the structure is vital to trigger the loss of long-range order through disorder of the FeO6 octahedra local structure, subsequently allowing reversible Na storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites for pseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ insertion and extraction, as demonstrated through operando and ex-situ characterizations. It leads to an applicable reversible capacity ( 300 mAh g-1) with a favorable average voltage of ca. 0.6 V and excellent rate capability (180.4 mAh g-1 at a current density of 2 A g-1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation. KW - XAS KW - Sodium-Ion-Batteries KW - In-situ PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631159 DO - https://doi.org/10.26434/chemrxiv-2025-2gn7z SP - 1 EP - 51 PB - American Chemical Society (ACS) AN - OPUS4-63115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, Yanchen A1 - de Oliveira Guilherme Buzanich, Ana A1 - Montoro, Luciano A. A1 - Liu, Hao A1 - Liu, Ye A1 - Emmerling, Franziska A1 - Russo, Patrícia A. A1 - Pinna, Nicola T1 - A partially disordered crystallographic shear block structure as fast-charging negative electrode material for lithium-ion batteries N2 - A well-ordered crystalline structure is crucial in battery electrodes, as the dimensionality and connectivity of the interstitial sites inherently influence Li+ ions diffusion kinetics. Niobium tungsten oxides block structures, composed of ReO3-type blocks of specific sizes with well-defined metal sites, are promising fast-charging negative electrode materials. Structural disorder is generally detrimental to conductivity or ion transport. However, here, we report an anomalous partially disordered Nb12WO33 structure that significantly enhances Li-ion storage performance compared to the known monoclinic Nb12WO33 phase. The partially disordered phase consists of corner-shared NbO6 octahedra blocks of varied sizes, including 5×4, 4×4, and 4×3, with a disordered arrangement of distorted WO4 tetrahedra at the corners of the blocks. This structural arrangement is robust during lithiation/delithiation, exhibiting minor local structure changes during cycling. It enables accelerated Li-ion migration, resulting in promising fast-charging performance, namely, 62.5 % and 44.7 % capacity retention at 20 C and 80 C, respectively. This study highlights the benefits of introducing disorder into niobium tungsten oxide shear structures, through the establishment of clear structure-performance correlations, offering guidelines for designing materials with targeted properties. KW - Lithium ion batteries KW - Oxides KW - XANES KW - XRD PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637994 DO - https://doi.org/10.1038/s41467-025-61646-9 SN - 2041-1723 VL - 16 IS - 1 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-63799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Xingyu A1 - Antunes, Margarida M. A1 - Guilherme Buzanich, Ana A1 - Cabanelas, Pedro A1 - Valente, Anabela A. A1 - Pinna, Nicola A1 - Russo, Patrícia A. T1 - Formation, Phase Transition, Surface, and Catalytic Properties of Cubic ZrO 2 Nanocrystals N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-Performance sodium storage anode. The presence of iron triggers the loss of long-rangeorder through disorder of the FeO6 octahedra local structure, subsequentlyallowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites forpseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation. KW - XAS KW - Sodium-ion Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654955 DO - https://doi.org/10.1021/acs.chemmater.5c01483 SN - 0897-4756 VL - 37 IS - 21 SP - 8568 EP - 8580 PB - American Chemical Society (ACS) AN - OPUS4-65495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Rui A1 - Russo, Patrícia A. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Jeon, Taeyeol A1 - Pinna, Nicola T1 - Hybrid organic–inorganic transition-metal phosphonates as precursors for water oxidation electrocatalysts N2 - Efficient water oxidation catalysts are required for the development of water splitting technologies. Herein, the synthesis of layered hybrid NiFephenylphosphonate compounds from metal acetylacetonate precursors and phenylphosphonic acid in benzyl alcohol, and their Oxygen evolution reaction performance in alkaline medium, are reported. The hybrid particles are formed by inorganic layers of NiO6 and FeO6 distorted octahedra separated by bilayers of the organic group, and template the Formation in situ of NiFe hydroxide nanosheets of sizes between 5 and 25 nm and thicknesses between 3 and 10 nm. X-ray absorption spectroscopy measurements suggest that the hybrid also acts as a template for the local structure of the metal sites in the active catalyst, which remain distorted after the transformation. Optimum electrocatalytic activity is achieved with the hybrid compound with a Fe content of 16%. The combination of the synergistic effect between Ni and Fe with the structural properties of the hybrid results in an efficient catalyst that generates a current density of 10 mA cm−2 at an overpotential of 240 mV, and also in a stable catalyst that operates continuously at low overpotentials for 160 h. KW - Water oxydation catalysis KW - EXAFS PY - 2017 DO - https://doi.org/10.1002/adfm.201703158 SN - 1616-301X SN - 1616-3028 VL - 27 IS - 40 SP - Article 1703158, 1 EP - 11 PB - WILEY-VCH Verlag CY - Weinheim AN - OPUS4-42783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -