TY - JOUR
A1 - Liu, Yanchen
A1 - Guilherme Buzanich, Ana
A1 - Alippi, Paola
A1 - Montoro, Luciano A.
A1 - Lee, Kug‐Seung
A1 - Jeon, Taeyeol
A1 - Weißer, Kilian
A1 - Karlsen, Martin A.
A1 - Russo, Patrícia A.
A1 - Pinna, Nicola
T1 - FeNb 2 O 6 as a High‐Performance Anode for Sodium‐Ion Batteries Enabled by Structural Amorphization Coupled with NbO 6 Local Ordering
N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-performance sodium storage anode. The presence of iron triggers the loss of long-range order through disorder of the FeO6 octahedra local structure, subsequently allowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites for pseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation.
KW - SIB
KW - XAS
KW - Sodium-ion Batteries
PY - 2025
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654931
DO - https://doi.org/10.1002/adma.202504100
SN - 0935-9648
VL - 37
IS - 46
SP - 1
EP - 13
PB - Wiley
AN - OPUS4-65493
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - INPR
A1 - Liu, Yanchen
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Alippi, Paola
A1 - Lee, Kug-Seung
A1 - Jeon, Taeyeol
A1 - Weißer, Kilian
A1 - Karlsen, Martin A.
A1 - Russo, Patrícia A.
A1 - Pinna, Nicola
T1 - FeNb2O6 as a high-performance anode for sodium-ion batteries enabled by structural amorphization coupled with NbO6 local ordering.
N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes materials for lithium-ion batteries. Currently, they are also emerging as promising anodes for sodium-ion batteries due to their low volume change and safety. However, the potential electrochemical performance in sodium energy storage is not fully achieved, primarily due to the larger radius of the Na+-ions. Here, we report for the first time an iron niobate with columbite structure as a high-performance sodium storage anode. The presence of iron in the structure is vital to trigger the loss of long-range order through disorder of the FeO6 octahedra local structure, subsequently allowing reversible Na storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites for pseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ insertion and extraction, as demonstrated through operando and ex-situ characterizations. It leads to an applicable reversible capacity ( 300 mAh g-1) with a favorable average voltage of ca. 0.6 V and excellent rate capability (180.4 mAh g-1 at a current density of 2 A g-1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation.
KW - XAS
KW - Sodium-Ion-Batteries
KW - In-situ
PY - 2025
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631159
DO - https://doi.org/10.26434/chemrxiv-2025-2gn7z
SP - 1
EP - 51
PB - American Chemical Society (ACS)
AN - OPUS4-63115
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Liu, Yanchen
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Montoro, Luciano A.
A1 - Liu, Hao
A1 - Liu, Ye
A1 - Emmerling, Franziska
A1 - Russo, Patrícia A.
A1 - Pinna, Nicola
T1 - A partially disordered crystallographic shear block structure as fast-charging negative electrode material for lithium-ion batteries
N2 - A well-ordered crystalline structure is crucial in battery electrodes, as the dimensionality and connectivity of the interstitial sites inherently influence Li+ ions diffusion kinetics. Niobium tungsten oxides block structures, composed of ReO3-type blocks of specific sizes with well-defined metal sites, are promising fast-charging negative electrode materials. Structural disorder is generally detrimental to conductivity or ion transport. However, here, we report an anomalous partially disordered Nb12WO33 structure that significantly enhances Li-ion storage performance compared to the known monoclinic Nb12WO33 phase. The partially disordered phase consists of corner-shared NbO6 octahedra blocks of varied sizes, including 5×4, 4×4, and 4×3, with a disordered arrangement of distorted WO4 tetrahedra at the corners of the blocks. This structural arrangement is robust during lithiation/delithiation, exhibiting minor local structure changes during cycling. It enables accelerated Li-ion migration, resulting in promising fast-charging performance, namely, 62.5 % and 44.7 % capacity retention at 20 C and 80 C, respectively. This study highlights the benefits of introducing disorder into niobium tungsten oxide shear structures, through the establishment of clear structure-performance correlations, offering guidelines for designing materials with targeted properties.
KW - Lithium ion batteries
KW - Oxides
KW - XANES
KW - XRD
PY - 2025
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637994
DO - https://doi.org/10.1038/s41467-025-61646-9
SN - 2041-1723
VL - 16
IS - 1
SP - 1
EP - 15
PB - Springer Science and Business Media LLC
AN - OPUS4-63799
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Yao, Xingyu
A1 - Antunes, Margarida M.
A1 - Guilherme Buzanich, Ana
A1 - Cabanelas, Pedro
A1 - Valente, Anabela A.
A1 - Pinna, Nicola
A1 - Russo, Patrícia A.
T1 - Formation, Phase Transition, Surface, and Catalytic Properties of Cubic ZrO 2 Nanocrystals
N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-Performance sodium storage anode. The presence of iron triggers the loss of long-rangeorder through disorder of the FeO6 octahedra local structure, subsequentlyallowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites forpseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation.
KW - XAS
KW - Sodium-ion Batteries
PY - 2025
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654955
DO - https://doi.org/10.1021/acs.chemmater.5c01483
SN - 0897-4756
VL - 37
IS - 21
SP - 8568
EP - 8580
PB - American Chemical Society (ACS)
AN - OPUS4-65495
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Zhang, Rui
A1 - Russo, Patrícia A.
A1 - de Oliveira Guilherme Buzanich, Ana
A1 - Jeon, Taeyeol
A1 - Pinna, Nicola
T1 - Hybrid organic–inorganic transition-metal phosphonates as precursors for water oxidation electrocatalysts
N2 - Efficient water oxidation catalysts are required for the development of water splitting technologies. Herein, the synthesis of layered hybrid NiFephenylphosphonate compounds from metal acetylacetonate precursors and phenylphosphonic acid in benzyl alcohol, and their Oxygen evolution reaction performance in alkaline medium, are reported. The hybrid particles are formed by inorganic layers of NiO6 and FeO6 distorted octahedra separated by bilayers of the organic group, and template the Formation in situ of NiFe hydroxide nanosheets of sizes between 5 and 25 nm and thicknesses between 3 and 10 nm. X-ray absorption spectroscopy measurements suggest that the hybrid also acts as a template for the local structure of the metal sites in the active catalyst, which remain distorted after the transformation. Optimum electrocatalytic activity is achieved with the hybrid compound with a Fe content of 16%. The combination of the synergistic effect between Ni and Fe with the structural properties of the hybrid results in an efficient catalyst that generates a current density of 10 mA cm−2 at an overpotential of 240 mV, and also in a stable catalyst that operates continuously at low overpotentials for 160 h.
KW - Water oxydation catalysis
KW - EXAFS
PY - 2017
DO - https://doi.org/10.1002/adfm.201703158
SN - 1616-301X
SN - 1616-3028
VL - 27
IS - 40
SP - Article 1703158, 1
EP - 11
PB - WILEY-VCH Verlag
CY - Weinheim
AN - OPUS4-42783
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -