TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Pourmand, P. A1 - Wolff, Dietmar A1 - Hedenqvist, M. T1 - Analysis of O-ring seal failure under static conditions and determination of end-of-lifetime criterion N2 - Determining a suitable and reliable end-of-lifetime criterion for O-ring seals is an important issue for long-term seal applications. Therefore, seal failure of ethylene propylene diene rubber (EPDM) and hydrogenated nitrile butadiene rubber (HNBR) O-rings aged in the compressed state at 125 °C and at 150 °C for up to 1.5 years was analyzed and investigated under static conditions, using both non-lubricated and lubricated seals. Changes of the material properties were analyzed with dynamic-mechanical analysis and permeability experiments. Indenter modulus measurements were used to investigate DLO effects. It became clear that O-rings can remain leak-tight under static conditions even when material properties have already degraded considerably, especially when adhesion effects are encountered. As a feasible and reliable end-of-lifetime criterion for O-ring seals under static conditions should include a safety margin for slight dimensional changes, a modified leakage test involving a small and rapid partial decompression of the seal was introduced that enabled determining a more realistic but still conservative end-of-lifetime criterion for an EPDM seal. KW - EPDM KW - HNBR KW - Seal failure KW - Leak-tightness KW - DLO KW - Oxygen permability KW - DMA KW - Indenter modulus PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-486125 SN - 2073-4360 VL - 11 IS - 8 SP - 1251, 1 EP - 19 PB - MDPI CY - Basel, CH AN - OPUS4-48612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Pourmand, P. A1 - Wolff, Dietmar A1 - Gedde, U.W. T1 - Influence of ageing on sealability of elastomeric O-rings N2 - At BAM, which is the federal institute for materials research and testing in Germany, it is one of our tasks to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes the assessment of the service lifetime of elastomeric seals that are part of the container lid system with regard to the requirements for long-term safety (40 years and more) of the containers. Therefore, we started an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) which are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) up to 1.5 years. In order to assess sealability, O-rings are aged in compression by 25 % (corresponding to the compression during service) between plates as well as in flanges that allow leakage rate measurements. For comparison, uncompressed O-rings are aged as well. Further methods characterising seal performance are compression stress relaxation (CSR) reflecting the loss of sealing force of a compressed seal over time, and compression set (CS) which represents the recovery behaviour of a seal after release from compression. Additionally, hardness is measured for information about the change of mechanical properties. The experimental results indicate that while hardness, CSR and CS show considerable degradation effects, the leakage rate stays relatively constant or even decreases until shrinkage combined with the loss of resilience of the aged seal leads to leakage. This demonstrates that static leakage rate, which is the only available direct seal performance criterion, has only limited sensitivity towards the degradation of the seal material. CS data is extrapolated using time-temperature shifts and Arrhenius graphs. An exemplary CS of 50 % would be reached after approx. 1.2, 17 and 29 years at 60 °C for HNBR, EPDM and FKM respectively. T2 - PolymerTec 2016 CY - Merseburg, Germany DA - 15.06.2016 KW - Compression KW - Leakage KW - Degradation KW - Rubber KW - Lifetime PY - 2017 U6 - https://doi.org/10.1002/masy.201600157 SN - 1022-1360 SN - 1521-3900 VL - 373 IS - 1 SP - UNSP 1600157, 1 EP - 10 PB - WILEY-V C H VERLAG GMBH CY - Weinheim AN - OPUS4-40958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -