TY - JOUR A1 - Zvereva, V.V. A1 - Asanov, I.P. A1 - Yusenko, Kirill A1 - Zadesenec, A.V. A1 - Plyusnin, P.E. A1 - Gerasimov, E.Yu. A1 - Maksimovskiy, E.A. A1 - Korenev, S.V. A1 - Asanova, T.I. T1 - Local atomic and electronic structure of Pt‑Os nanoplates and nanofbers derived from the single‑source precursor (NH4)2[Pt0.5Os0.5Cl6] N2 - Abstract Nowadays, Pt-Os binary systems are mainly considered as catalysts and electrocatalysts, but the role of Os in these processes is still poorly understood. The electronic structure of Pt-Os nanosystems remains a few studied as well. Using bimetallic (NH4)2[Pt0.5Os0.5Cl6] as a single-source precursor for preparing Pt-Os nanoalloy through the thermal decomposition in hydrogen and inert atmospheres, the relation of morphology, atomic ordering, and electronic structure of Pt-Os nanoalloy was examined by in situ Quick XAFS, XPS, PXRD, SEM, and HRTEM techniques. Being the only variable parameter, the decomposition atmosphere was found to govern the morphology of the Pt-Os nanoalloy and change the atomic ordering (alloying extent), which involves a change in the electronic structure. In a hydrogen atmosphere, the nanofibers (NFs) (ø ~ 5–6 nm) with the atomic ordering Oscore&Pt-richshell were observed to form; in a nitrogen atmosphere, thin nanoplates (NPLs) (~ 12 nm) with the atomic architecture Os-richcore&Ptrichshell were found out. The depletion in the Os 5d5/2 and Pt 5d5/2,3/2 states was revealed for Pt-Os nanoalloys. This unusual result disagrees with the known d-band theory and indicates that there is a gain of non-d conduction electron counts at one or both sites. Mixed conductivity may exist in such Pt-Os nanoalloy that may be responsible for a manifestation of new physical properties of this binary system . KW - Bimetallic alloy KW - Nanoalloy KW - Synchrotron radiation KW - XAFS KW - Electronic structure KW - Alloy morphology PY - 2021 DO - https://doi.org/10.1007/s11051-021-05378-z SN - 1388-0764 VL - 24 IS - 1 SP - 1 EP - 23 PB - Springer AN - OPUS4-55347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Zvereva, V. A1 - Martynova, S. A1 - Asanov, I. A1 - La Fontaine, C. A1 - Roudenko, O. A1 - Gubanov, A. A1 - Plyusnin, P. A1 - Korenev, S. A1 - Asanova, T. T1 - Insight of the thermal decomposition of ammonium hexahalogenoiridates(IV) and hexachloroiridate(III) N2 - Thermal decomposition of (NH4)3[IrCl6]·H2O, (NH4)2[IrCl6] and (NH4)2[IrBr6] in reductive and inert atmospheres has been investigated in situ using quick-EXAFS and temperature-resolved powder X-ray diffraction. For the first time, (NH4)2[Ir(NH3)Cl5] and (NH4)2[Ir(NH3)Br5] have been proven as intermediates of thermal decomposition of (NH4)3[IrCl6]·H2O, (NH4)2[IrCl6] and (NH4)2[IrBr6]. Thermal degradation of (NH4)2[IrCl6] and (NH4)2[IrBr6] is a more complex process as suggested previously and includes simultaneous formation of (NH4)2[Ir(NH3)Cl5] and (NH4)2[Ir(NH3)Br5] intermediates mixed with metallic iridium. In the inert atmosphere, complexes (NH4)[Ir(NH3)2Cl4] and (NH4)[Ir(NH3)2Br4] as well as [Ir(NH3)3Br3] were proposed as possible intermediates before formation of metallic iridium particles KW - Thermal decomposition KW - Iridium compounds KW - EXAFS KW - In situ PXRD PY - 2020 DO - https://doi.org/10.1039/D0CP02743J VL - 22 IS - 40 SP - 22923 EP - 22934 AN - OPUS4-51224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -