TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abou-Ras, D. A1 - Caballero, R. A1 - Fischer, C.-H. A1 - Kaufmann, C.A. A1 - Lauermann, I. A1 - Mainz, R. A1 - Mönig, H. A1 - Schöpke, A. A1 - Stephan, C. A1 - Streeck, C. A1 - Schorr, S. A1 - Eicke, A. A1 - Döbeli, M. A1 - Gade, B. A1 - Hinrichs, J. A1 - Nunney, T. A1 - Dijkstra, H. A1 - Hoffmann, V. A1 - Klemm, D. A1 - Efimova, V. A1 - Bergmaier, A. A1 - Dollinger, G. A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Rockett, A.A. A1 - Perez-Rodriguez, A. A1 - Alvarez-Garcia, J. A1 - Izquierdo-Roca, V. A1 - Schmid, T. A1 - Choi, P.-P. A1 - Müller, M. A1 - Bertram, F. A1 - Christen, J. A1 - Khatri, H. A1 - Collins, R.W. A1 - Marsillac, S. A1 - Kötschau, I. T1 - Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films N2 - The present work shows results on elemental distribution analyses in Cu(In,Ga)Se2 thin films for solar cells performed by use of wavelength-dispersive and energy-dispersive X-ray spectrometry (EDX) in a scanning electron microscope, EDX in a transmission electron microscope, X-ray photoelectron, angle-dependent soft X-ray emission, secondary ion-mass (SIMS), time-of-flight SIMS, sputtered neutral mass, glow-discharge optical emission and glow-discharge mass, Auger electron, and Rutherford backscattering spectrometry, by use of scanning Auger electron microscopy, Raman depth profiling, and Raman mapping, as well as by use of elastic recoil detection analysis, grazing-incidence X-ray and electron backscatter diffraction, and grazing-incidence X-ray fluorescence analysis. The Cu(In,Ga)Se2 thin films used for the present comparison were produced during the same identical deposition run and exhibit thicknesses of about 2 µm. The analysis techniques were compared with respect to their spatial and depth resolutions, measuring speeds, availabilities, and detection limits. KW - Elemental distributions KW - Comparison KW - Depth profiling KW - Chemical mapping KW - Thin films KW - Solar cells KW - Chalcopyrite-type KW - Cu(In,Ga)Se2 PY - 2011 DO - https://doi.org/10.1017/S1431927611000523 SN - 1431-9276 SN - 1435-8115 VL - 17 IS - 5 SP - 728 EP - 751 PB - Cambridge University Press CY - New York, NY AN - OPUS4-24506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Mondragón, L. A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Marcos, M. Dolores A1 - Murguía, J.R. A1 - Amorós, P. A1 - Rurack, Knut A1 - Pérez-Payá, E. T1 - Selektiver, hoch empfindlicher und schneller Nachweis genomischer DNA mit gesteuerten Materialien am Beispiel von Mycoplasma N2 - Mit DNA verschlossene und mit Farbstoff beladene mesoporöse Siliciumdioxid-Nanopartikel wurden zum Nachweis von Mycoplasma bis zu einer Nachweisgrenze von ca. 70 genomischen DNA-Kopien pro µL in real kontaminierten Zellkulturmedien ohne die Hilfe von PCR-Techniken eingesetzt. KW - DNA KW - Gesteuerte Materialien KW - Mesoporöse Träger KW - Mycoplasma KW - Sonden PY - 2013 DO - https://doi.org/10.1002/ange.201302954 SN - 0044-8249 SN - 0932-2140 SN - 1521-3757 VL - 125 IS - 34 SP - 9106 EP - 9110 PB - Wiley-VCH CY - Weinheim AN - OPUS4-28970 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Mondragón, L. A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Marcos, M. Dolores A1 - Murguía, J.R. A1 - Amorós, P. A1 - Rurack, Knut A1 - Pérez-Payá, E. T1 - Selective, highly sensitive, and rapid detection of genomic DNA by using gated materials: Mycoplasma detection N2 - Come and gate it: DNA-capped mesoporous silica nanoparticles loaded with a dye are used to detect the common contaminate Mycoplasma in real contaminated cell-culture media without needing polymerase chain reaction (PCR) techniques, at a detection limit in the range of 70 DNA genome copies µL-1. KW - DNA KW - Gated materials KW - Mesoporous materials KW - Mycoplasma KW - Sensors PY - 2013 DO - https://doi.org/10.1002/anie.201302954 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 52 IS - 34 SP - 8938 EP - 8942 PB - Wiley-VCH CY - Weinheim AN - OPUS4-28976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pérez, P. A1 - Cabeza, Sandra A1 - Garcés, G. A1 - Adeva, Paloma T1 - Influence of long period stacking ordered phase arrangements on thecorrosion behaviour of extruded Mg97Y2Zn1 alloy N2 - The influence of second phase arrangements on the corrosion resistance of extruded Mg97Y2Zn1 alloy has been evaluated in a 0.1 M NaCl solution. The microstructure of the alloy consists of a high volume fraction of coarse elongated particles of a long period stacking ordered phase aligned along the extrusion direction. Corrosion rate of transversal sections is lower than that of longitudinal sections. Such difference is attributed to the different orientation of second phases in longitudinal and transversal sections. The corrosion front advances mainly perpendicular to the surface in transversal samples while perpendicular and lateral growth occur in longitudinal samples KW - passive films KW - Magnesium alloys KW - anodic dissolution PY - 2016 DO - https://doi.org/10.1016/j.corsci.2016.02.024 SN - 0010-938X VL - 107 SP - 107 EP - 112 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-36358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garcés, G. A1 - Perez, P. A1 - Cabeza, Sandra A1 - Lin, H.K. A1 - Kim, S. A1 - Gan, W. A1 - Adeva, Paloma T1 - Reverse tension /compression asymmetry of a Mg–Y–Zn alloys N2 - Room temperature mechanical behavior of extruded Mg–Y–Zn alloys with varying fractions of LPSO phase was studied in tension and compression along the extrusion direction. The microstructure is characterized by elongated LPSO fibers along the extrusion direction within the magnesium matrix. Moreover, the magnesium matrix presents a bimodal grain structure with dynamically-recrystallized grains and deformed, elongated grains with the basal plane parallel to the extrusion direction. The beginning of plasticity depends on the volume fraction of deformed and DRX grains. Alloys with low volume fraction of LPSO phase(o10vol%),with a high volume fraction of deformed grains, show the typical behavior of extruded magnesium alloys where yield stress in tension is higher than in compression. This effect is, however, reversed as the volume fraction of the LPSO phase increases since DRX grains are majority. KW - plasticity KW - Magnesium alloy KW - LPSO PY - 2015 DO - https://doi.org/doi:10.1016/j.msea.2015.09.003 VL - 647 SP - 287 EP - 293 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-36359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Daireaux, A. A1 - Wielgosz, R. A1 - Davies, S. A1 - Kang, M. A1 - Ting, H. A1 - Philipp, Rosemarie A1 - Malz, Frank A1 - Shimizu, Y. A1 - Frias, E. A1 - Pérez, M. A1 - Apps, P. A1 - Fernandes-Whaley, M. A1 - De Vos, B. A1 - Wiagnon, K. A1 - Ruangrittinon, N. A1 - Wood, S. A1 - Duewer, D.L. A1 - Schantz, M.M. A1 - Bedner, M. A1 - Hancock, D. A1 - Esker, J. T1 - An international comparison of mass fraction purity assignment of theophylline: CCQM pilot study CCQM-P20.e (Theophylline) PY - 2009 DO - https://doi.org/10.1088/0026-1394/46/1A/08019 SN - 0026-1394 SN - 1681-7575 VL - 46 IS - 08019 SP - 1 EP - 37 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-20030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Garcés, G. A1 - Pérez, P. A1 - Adeva, Paloma T1 - Properties of WZ21 (%wt) alloy processed by a powder metallurgy route N2 - Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt.) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 µm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. KW - Magnesium KW - RE KW - Microstructure KW - Creep KW - Corrosion PY - 2015 DO - https://doi.org/10.1016/j.jmbbm.2015.02.022 SN - 1751-6161 SN - 1878-0180 VL - 46 SP - 115 EP - 126 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-32704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Álvarez-García, J. A1 - Izquierdo-Roca, V. A1 - Pistor, P. A1 - Schmid, Thomas A1 - Pérez-Rodríguez, A. ED - Abou-Ras, D. ED - Kirchartz, T. ED - Rau, U. T1 - Raman spectroscopy on thin films for solar cells N2 - In the present chapter, the capabilities of Raman spectroscopy for the advanced characterisation of thin films for solar cells are reviewed. Raman spectroscopy is an optical, nondestructive technique based on the inelastic scattering of photons with elemental vibrational excitations in the material. The line shape and position of the Raman bands are determined by the crystalline structure and chemical composition of the measured samples, being sensitive to the presence of crystalline defects, impurities and strain. Presence of peaks characteristic of different phases also allows for the identification of secondary phases that are strongly related to the growth and process conditions of the films. All these aspects account for a strong interest in the analysis of the Raman spectra, providing a powerful nondestructive analytical tool for the structural and chemical assessment of the films. In addition, the combination of a Raman spectrometer with an optical microscope also allows for achieving a high spatial resolutions (of below 1 µm) when mapping surfaces and analyzing depth-resolved phase distributions in thin films. The present chapter is divided into four main sections: The two first ones are devoted to a revision of the Fundamentals of Raman spectroscopy (Section 17.2) and Vibrational modes in crystalline materials (Section 17.3). Section 17.4 deals with the main experimental considerations involved in the design and implementation of a Raman scattering setup. This is followed by a detailed description of the application of Raman scattering for the structural and chemico-physical analysis of thin film photovoltaic materials (Section 17.5), with the identification of crystalline structure and secondary phases, evaluation of film crystallinity, analysis of chemical composition of semiconductor alloys, characterisation of nanocrystalline and amorphous layers, stress effects and crystal orientations. This includes the description of corresponding state of the art and recent case examples that illustrate the capabilities of the Raman technique for the advanced characterisation of layers and process monitoring in thin-film photovoltaic technologies. KW - Thin-film solar cells KW - Polycrystalline materials KW - Raman spectroscopy KW - Raman microscopy PY - 2016 UR - http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527339922.html SN - 978-3-527-33992-1 SP - 469 EP - 499 PB - Wiley & Sons, Ltd. CY - Oxford, UK AN - OPUS4-37451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garces, G. A1 - Perez, P. A1 - Cabeza, Sandra A1 - Lin, H. K. A1 - Kim, S. A1 - Gan, W. A1 - Adeva, Paloma T1 - Reverse tension/compression asymmetry of a Mg-Y-Zn alloys containing LPSO phases N2 - Room temperature mechanical behavior of extruded Mg–Y–Zn alloys with varying fractions of LPSO phase was studied in tension and compression along the extrusion direction. The microstructure is characterised by elongated LPSO fibers along the extrusion direction within the magnesium matrix. Moreover, the magnesium matrix presents a bimodal grain structure with dynamically-recrystallized grains and deformed, elongated grains with the basal plane parallel to the extrusion direction. The beginning of plasticity depends on the volume fraction of deformed and DRX grains. Alloys with low volume fraction of LPSO phase (<10 vol%), with a high volume fraction of deformed grains, show the typical behavior of extruded magnesium alloys where yield stress in tension is higher than in compression. This effect is, however, reversed as the volume fraction of the LPSO phase increases since DRX grains are majority. PY - 2015 DO - https://doi.org/10.1016/j.msea.2015.09.003 SN - 0921-5093 SN - 1873-4936 VL - 647 SP - 287 EP - 293 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -