TY - CONF A1 - Koegler, M. A1 - Paul, Andrea A1 - Alborch, K. P. A1 - Birkholz, M. A1 - Junne, S. A1 - Neubauer, P. T1 - Raman on-line monitoring approach for bioprocess and bio-pharmaceutical manufacturing T2 - Tagungsband 12. Kolloquium Prozessanalytik N2 - There is a high demand of monitoring in the era of QbD in industrial scale require new approaches to gain data rapidly and of sufficient quality in real time. Raman spectroscopy technology has great potential but not yet shown it fully in process on-line monitoring due to limitations such as i) uncomplete separation between cells and growth media alone, ii) general weak Raman signals of analytes in complex solutions and iii) strong background signals such as the auto-fluorescence, cosmic rays and surrounding lights overlapping the weak Raman signals. Here we demonstrate a Proof-of-Concept on an the example lactic acid bacteria process using a Streptococcus thermophiles fermentation. Results from three different Raman approaches are presented: 1) Time-Gated Raman Spectroscopy (TG-Raman), 2) Surface Enhanced Raman Spectroscopy (SERS) and 3) Raman process spectroscopy with NIR excitation combined with multivariate data analysis (MVDA) using Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR). T2 - 12. Kolloquium Arbeitskreis Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - Raman KW - Chemometrics KW - SERS KW - TimeGate PY - 2016 SP - 91 EP - 93 CY - Berlin AN - OPUS4-38673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Neubauer, J. A1 - Goetz-Neunhoeffer, F. A1 - Schmid, Thomas T1 - Calcium aluminates in clinker remnants as marker phases for various types of 19th-century cement studied by Raman microspectroscopy JF - European Journal of Mineralogy N2 - In the second half of the 19th century, Roman and Portland cements played an essential role as active hydraulic binder material in building construction and façade ornamentation. Size and heterogeneous phase assemblage of unhydrated cement clinker remnants in historical cement stone differ significantly from those of remnants occurring in modern Portland cement clinker burnt in rotary kilns due to limitations of the production technology available in the 19th century (e.g., comminution and homogeneity of the feedstock, burning temperature and regime in the intermittently operated shaft kilns, grinding machinery). In the common analytical approach, thin sections and fracture surfaces of historical Roman and Portland cement mortars are characterised regarding their mineralogical composition and microstructure using optical and electron microscopic imaging techniques. Raman microspectroscopy can be additionally employed for petrographic examination, overcoming some limitations of the methods used so far. The determination of the phase content of residual cement clinker grains in the hydrated matrix allows for the differentiation of Roman and Portland cement binders. As marker phases, we propose the calcium aluminates CA, C12A7, C2AS and C3A – besides the commonly used calcium silicates C2S and C3S – because of their different formation temperatures and stability fields. This study focuses on the identification of different calcium aluminate and aluminoferrite phases in clinker remnants in samples of cast ornaments of three buildings in Switzerland raised between 1875 and 1893; the obtained Raman spectra are compared with fingerprint spectra of the corresponding pure, synthesised clinker phases collected with the same instrument for an unambiguous data interpretation. In addition to these phases, mainly minerals showing no hydraulic activity, such as, wollastonite CS, rankinite C3S2, free lime, portlandite, iron oxides, garnets, augite, albite and feldspathoids have been identified in the sampled historical cement stones by Raman microspectroscopy. As there is a strong relationship between coexisting clinker phases and the chemical composition of the raw meal as well as the burning and cooling history during clinkering, the results can help in understanding the physical and mechanical characteristics of historical cement mortars. This knowledge is fundamental for the choice and the formulation of appropriate repair materials with tailored properties employed in the field of restoration and preservation of the architectural heritage of the 19th and early 20th centuries. KW - Roman cement KW - Meso Portland cement KW - Portland cement KW - Clinker relicts KW - Raman microspectroscopy PY - 2016 DO - https://doi.org/10.1127/ejm/2016/0028-2577 SN - 0935-1221 SN - 1617-4011 VL - 28 IS - 5 SP - 907 EP - 914 AN - OPUS4-39046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Jakob, C. A1 - Ectors, D. A1 - Neubauer, J. A1 - Schmid, Thomas T1 - Measuring the Burning Temperatures of Anhydrite Micrograins in a High-Fired Medieval Gypsum Mortar JF - ChemistrySelect N2 - Typical feature of high-fired medieval gypsum mortars is a compact microstructure of squat gypsum crystals containing firing products as remains of the calcination process. So far, the burning history of the binder is estimated based on morphological characteristics of the latter. A novel Raman microspectroscopy approach provides access to the calcination temperatures of individual anhydrite grains based on quantifiable spectroscopic changes appearing due to gradual variations of crystallinity, as independently confirmed by X-ray diffraction analysis of anhydrites synthesised at temperatures between 500°C and 900°C. The approach was successfully applied to the high-fired gypsum mortar of a South Tyrolean stucco sculpture of a pieta dated around 1420. Microparticles of burned anhydrite II with firing temperatures scattered around 650°C and clusters of thermally damaged natural anhydrite II crystals from the raw material were identified and imaged. KW - Analytical methods KW - Gypsum technology KW - High-fired gypsum mortar KW - Raman microspectroscopy KW - Thermal anhydrite PY - 2017 DO - https://doi.org/10.1002/slct.201701260 VL - 2 IS - 28 SP - 9153 EP - 9156 PB - Wiley VCH Verlag AN - OPUS4-42458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koegler, M. A1 - Paul, Andrea A1 - Anane, E. A1 - Birkholz, M. A1 - Bunker, A. A1 - Viitala, T. A1 - Maiwald, Michael A1 - Junne, S. A1 - Neubauer, P. T1 - Comparison of time-gated surface-enhanced Raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples JF - Biotechnology progress N2 - The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here, we compare time-gated Raman (TG-Raman)-, continuous wave NIRprocess Raman (NIR-Raman), and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP, and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids, and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. KW - Time-gated Raman (TG-Raman) KW - Surface-enhanced Raman spectroscopy (SERS) KW - Multivariate data analysis KW - Metabolite quantification KW - Escherichia coli PY - 2018 DO - https://doi.org/10.1002/btpr.2665 SN - 1520-6033 SN - 8756-7938 VL - 34 IS - 6 SP - 1533 EP - 1542 PB - Wiley AN - OPUS4-45831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pott, U. A1 - Crasselt, Claudia A1 - Fobbe, N. A1 - Haist, M. A1 - Heinemann, M. A1 - Hellmann, S. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Lei, L. A1 - Li, R. A1 - Link, J. A1 - Lowke, D. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Nicia, D. A1 - Plank, J. A1 - Reißig, S. A1 - Schäfer, T. A1 - Schilde, C. A1 - Schmidt, Wolfram A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Strybny, B. A1 - Ukrainczyk, N. A1 - Wolf, J. A1 - Xiao, P. A1 - Stephan, D. T1 - Characterization data of reference materials used for phase II of the priority program DFG SPP 2005 “Opus Fluidum Futurum –Rheology of reactive, multiscale, multiphase construction materials” JF - Data in Brief N2 - A thorough characterization of base materials is the prereq- uisite for further research. In this paper, the characterization data of the reference materials (CEM I 42.5 R, limestone pow- der, calcined clay and a mixture of these three components) used in the second funding phase of the priority program 2005 of the German Research Foundation (DFG SPP 2005) are presented under the aspects of chemical and min- eralogical composition as well as physical and chemical properties. The data were collected based on tests performed by up to eleven research groups involved in this cooperative program. KW - Portland cement KW - Limestone powder KW - Calcined clay KW - Sustainable cement KW - DFG SPP 2005 PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569913 DO - https://doi.org/10.1016/j.dib.2023.108902 VL - 47 SP - 1 EP - 19 PB - Elsevier AN - OPUS4-56991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. C. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Schmid, M. A1 - Kißling, P. A. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM III/A 42.5N used for priority program DFG SPP 2005 "Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials" JF - Data in brief N2 - Two types of cements were selected as the reference cement in the priority program 2005 of the German Research Foundation (DFG SPP 2005). A thorough characterization of CEM I 42.5 R has been made in a recent publication. In this paper, the characterization data of the other reference cement CEM III/A 42.5 N are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The characterization data of the slag, which is the second main constituent of this specific cement besides the clinker, are presented independently. For all data received, the mean values and the corresponding errors were calculated. The data shall be used for the ongoing research within the priority program. Also, researchers from outside this priority program can benefit from these data if the same materials are used. KW - Cement KW - Slag KW - Characterization KW - DFG SPP 2005 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568980 DO - https://doi.org/10.1016/j.dib.2020.105524 SN - 2352-3409 VL - 30 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-56898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -