TY - JOUR A1 - Drews, A. A1 - Pietzsch, H.-J. A1 - Syhre, R. A1 - Seifert, S. A1 - Varnäs, K. A1 - Hall, H. A1 - Halldin, C. A1 - Kraus, Werner A1 - Karlsson, P. T1 - Synthesis and biological evaluation of technetium(III) mixed-ligand complexes with high affinity for the cerebral 5-HT1A receptor and the alpha-1-adrenergic receptor N2 - Tc(III) and Re(III) complexes [M(NS3)(CNR)] (M = Re, 99mTc, NS3 = 2,2?,2?-nitrilotris(ethanethiol), CNR = functionalized isocyanide bearing a derivative of WAY 100635) have been synthesized and characterized. Re was used as Tc surrogate for chemical characterization and in vitro receptor-binding studies. For two representatives subnanomolar affinities for the 5-HT1A as well as for the alpha1-adrenergic receptor were reached. Biodistribution studies in rats of the 99mTc complexes showed brain uptakes between 0.3 and 0.5% ID/organ (5 min p.i.). In vitro autoradiography of one 99mTc representative in sections of post mortem human brain indicate its accumulation in 5-HT1A receptor-rich brain regions. However, addition of the specific 5-HT1A receptor agonist 8-OH-DPAT as well as the alpha1-adrenoceptor antagonist prazosin could not substantially block this tracer accumulation. A preliminary SPET study in a monkey showed negligible brain uptake. KW - 5-HT1A receptor KW - Alpha 1-adrenergic receptor KW - Technetium-99m KW - Rhenium KW - Autoradiography KW - SPET PY - 2002 DO - https://doi.org/10.1016/S0969-8051(02)00296-2 SN - 0883-2897 VL - 29 IS - 4 SP - 389 EP - 398 PB - Elsevier Science Inc. CY - New York, NY AN - OPUS4-1553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pacheco, V. A1 - Marattukalam, J. J. A1 - Karlsson, D. A1 - Dessieux, L. A1 - Tran, K. V. A1 - Beran, P. A1 - Manke, I. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Sahlberg, M. A1 - Woracek, R. T1 - On the relationship between laser scan strategy, texture variations and hidden nucleation sites for failure in laser powder-bed fusion N2 - While laser powder-bed fusion has overcome some of the design constraints of conventional manufacturing methods, it requires careful selection of process parameters and scan strategies to obtain favorable properties. Here we show that even simple scan strategies, complex ones being inevitable when printing intricate designs, can inadvertently produce local alterations of the microstructure and preferential grain orientation over small areas – which easily remain unnoticed across the macroscale. We describe how a combined usage of neutron imaging and electron backscatter diffraction can reveal these localized variations and explain their origin within cm-sized parts. We explain the observed contrast variations by linking the neutron images to simulated data, pole figures and EBSD, providing an invaluable reference for future studies and showing that presumably minor changes of the scan strategy can have detrimental effects on the mechanical properties. In-situ tensile tests reveal that fracture occurs in a region that was re-melted during the building process. KW - Laser powder-bed fusion KW - Texture KW - Preferential orientation KW - Diffraction contrast neutron imaging KW - Bragg-edge PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568054 DO - https://doi.org/10.1016/j.mtla.2022.101614 VL - 26 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-56805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -