TY - JOUR A1 - Derlet, P. A1 - Bocquet, H. A1 - Maaß, Robert T1 - Viscosity and transport in a model fragile metallic glass N2 - How thermally activated structural excitations quantitatively mediate transport and microplasticity in a model binary glass at the microsecond timescale is revealed using atomistic simulation. These local excitations, involving a stringlike sequence of atomic displacements, admit a far-field shear-stress signature and underlie the transport of free-volume and bond geometry. Such transport is found to correspond to the Evolution of a disclination network describing the spatial connectivity of topologically distinct bonding environments, demonstrating the important role of geometrical frustration in both glass structure and its underlying dynamics. KW - Metallic glass KW - Viscosity PY - 2021 U6 - https://doi.org/10.1103/PhysRevMaterials.5.125601 SN - 2475-9953 VL - 5 SP - 1 EP - 7 PB - American Physical Society CY - College Park, MD AN - OPUS4-54152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Microstructural signatures of dislocation avalanches in a high-entropy alloy N2 - Here, we trace in situ the slip-line formation and morphological signature of dislocation avalanches in a highentropy alloy with the aim of revealing their microstructural degree of localization. Correlating the intermittent microplastic events with their corresponding slip-line patterns allows defining two main event types, one of which is linked to the formation of new slip lines, whereas the other one involves reactivation of already existing slip lines. The formation of new slip lines reveals statistically larger and faster avalanches. The opposite tendency is seen for avalanches involving reactivation of already existing slip lines. The combination of both these types of events represents the highest degree of spatial avalanche delocalization that spans the entire sample, forming a group of events that determine the truncation length scale of the truncated power-law scaling. These observations link the statistics of dislocation avalanches to a microstructural observable. KW - High-entropy alloy KW - Dislocation avalanches PY - 2021 U6 - https://doi.org/10.1103/PhysRevMaterials.5.043604 SN - 2475-9953 VL - 5 IS - 4 SP - 3604 PB - American Physical Society CY - College Park, MD AN - OPUS4-52458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maaß, Robert A1 - Derlet, P. T1 - Micro-plasticity in a fragile model binary glass N2 - Atomistic deformation simulations in the nominally elastic regime are performed for a model binary glass with strain rates as low as 10 4 /s (corresponding to 0.01 shear strain per 1 μs). A strain rate dependent elastic softening due to a micro-plasticity is observed, which is mediated by thermally-activated localized structural transformations (LSEs). A closer inspection of the atomic-scale structure indicates the material response is distinctly different for two types of local atomic environments. A system spanning iscosahe- drally coordinated substructure responds purely elastically, whereas the remaining substructure admits both elastic and microplastic evolution. This leads to a heterogeneous internal stress distribution which, upon unloading, results in negative creep and complete residual-strain recovery. A detailed structural analysis in terms of local stress, atomic displacement, and SU(2) local bonding topology shows such mi- croscopic processes can result in large changes in local stress and are more likely to occur in geomet- rically frustrated regions characterized by higher free volume and softer elastic stiffness. The thermally- activated LSE activity also mediates structural relaxation, and in this way should be distinguished from stress-driven shear transformation activity which only rejuvenates glass structure. The frequency of LSE activity, and therefore the amount of micro-plasticity, is found to be related to the degree to which the glassy state is relaxed. These insights shed atomistic light onto the structural origins that may govern re- cent experimental observations of significant structural evolution in response to elastic loading protocols. KW - Molecular dynamics KW - Bulk metallic glasses KW - Plasticity KW - Residual strains PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-523782 VL - 209 SP - 116771 PB - Elsevier Ltd. AN - OPUS4-52378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Intermittent microplasticity in the presence of a complex microstructure N2 - We demonstrate the gradual shift from scale-free intermittent microplasticity to a scale-dependent behavior via the introduction of a variety of microstructural features within the Al-Cu binary alloy system. As long as the obstacles to dislocation motion remain shearable, the statistics of intermittent microplasticity has fat-tailed contributions. The introduction of incoherent precipitates leads to a complete transition from scale-free powerlaw scaling to an exponential and scale-dependent distribution. These results demonstrate how non-Gaussian interactions survive across different microstructures and further suggest that characteristic microstructural length scales and obstacle pinning-strengths are of secondary importance for the intermittency statistics, as long as dislocations can shear their local environment. KW - Scale-dependent behavior KW - Al-Cu binary alloy system PY - 2022 U6 - https://doi.org/10.1103/PhysRevMaterials.6.073602 SN - 2475-9953 VL - 6 IS - 7 SP - 1 EP - 9 PB - American Physical Society AN - OPUS4-55387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Optimally rejuvenated model binary glasses N2 - Using the creation relaxation algorithm developed for the atomistic modeling of the high-dose irradiation limit of crystalline systems, we explore the limits of the structural rejuvenation of a highly excited model binary glass. This high-energy athermal amorphous structure exhibits a direct transition to homogeneous plastic flow and a microstructure that is largely insensitive to this flow, being characterized by a porous system-spanning network of minimally frustrated structural motifs. The observed homogeneous plasticity is mediated by the same string-like structural excitations, which mediate structural relaxation and microplasticity at finite temperature in more relaxed structures. This highly rejuvenated structural asymptote is not far from the structural state of regions, which have experienced athermal shear localization in more relaxed samples, suggesting an optimally rejuvenated glassy structure will always be limited by that produced by shear localization. KW - Metallic glasses KW - Creation-relaxation algorithm KW - Shear PY - 2022 U6 - https://doi.org/10.1103/PhysRevMaterials.6.125604 VL - 6 IS - 12 SP - 1 EP - 13 PB - American Physical Society AN - OPUS4-56741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, A. A1 - Ott, C. A1 - Pechimuthu, Dinesh A1 - Moosavi, Robabeh A1 - Stoica, M. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Shear-band cavitation determines the shape of the stress-strain curve of metallic glasses N2 - Metallic glasses are known to have a remarkably robust yield strength, admitting Weibull moduli as high as for crystalline engineering alloys. However, their postyielding behavior is strongly varying, with large scatter in both flow stress levels and strains at failure. Using x-ray tomography, we reveal how a strain-dependent internal evolution of shear-band cavities underlies this unpredictable postyielding response.We demonstrate how macroscopic strain softening coincides with the first detection of internal shear-band cavitation. Cavity growth during plastic flow is found to follow a power law, which yields a fractal dimension and a roughness exponent in excellent agreement with self-similar surface properties obtained after fracture. These findings demonstrate how internal microcracking coexists with shear-band plasticity along the plastic part of a stress-strain curve, rationalizing the large variability of plastic flow behavior seen for metallic glasses. KW - Shear-band cavitation KW - Metallic glasses PY - 2023 U6 - https://doi.org/10.1103/PhysRevMaterials.7.023602 SN - 2475-9953 VL - 7 IS - 2 SP - 1 EP - 11 PB - American Physical Society AN - OPUS4-57042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riechers, Birte A1 - Ott, C. A1 - Das, S. M. A1 - Liebscher, C. A1 - Samwer, K. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - On the elastic microstructure of bulk metallic glasses N2 - Metallic glasses (MGs) are known to be structurally heterogeneous at the nanometer (nm) scale. In addition, elastic property mapping has indicated the presence of at least an order-of-magnitude larger length scales, of which the origin continues to remain unknown. Here we demonstrate the existence of an elastic decorrelation length of the order of 100 nm in a Zr-based bulk MG using spatially resolved elastic property mapping via nanoindentation. Since compositional modulations sufficiently large to account for this elastic microstructure were not resolved by analytical scanning-transmission electron microscopy, chemical phase separation such as spinodal decomposition cannot explain their occurrence as previously suggested. Instead, we argue that the revealed long-range elastic modulations stem from structural variations affecting the local density. These emerge during solidification and are strongly influenced by the cooling constraints imposed on bulk MGs during the casting process. KW - Metallic glasses KW - Nanoindentation KW - Elastic microstructure PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-573504 SN - 0264-1275 VL - 229 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -