TY - JOUR A1 - Rizzardi, Q. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Intermittent microplasticity in the presence of a complex microstructure N2 - We demonstrate the gradual shift from scale-free intermittent microplasticity to a scale-dependent behavior via the introduction of a variety of microstructural features within the Al-Cu binary alloy system. As long as the obstacles to dislocation motion remain shearable, the statistics of intermittent microplasticity has fat-tailed contributions. The introduction of incoherent precipitates leads to a complete transition from scale-free powerlaw scaling to an exponential and scale-dependent distribution. These results demonstrate how non-Gaussian interactions survive across different microstructures and further suggest that characteristic microstructural length scales and obstacle pinning-strengths are of secondary importance for the intermittency statistics, as long as dislocations can shear their local environment. KW - Scale-dependent behavior KW - Al-Cu binary alloy system PY - 2022 U6 - https://doi.org/10.1103/PhysRevMaterials.6.073602 SN - 2475-9953 VL - 6 IS - 7 SP - 1 EP - 9 PB - American Physical Society AN - OPUS4-55387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Microstructural signatures of dislocation avalanches in a high-entropy alloy N2 - Here, we trace in situ the slip-line formation and morphological signature of dislocation avalanches in a highentropy alloy with the aim of revealing their microstructural degree of localization. Correlating the intermittent microplastic events with their corresponding slip-line patterns allows defining two main event types, one of which is linked to the formation of new slip lines, whereas the other one involves reactivation of already existing slip lines. The formation of new slip lines reveals statistically larger and faster avalanches. The opposite tendency is seen for avalanches involving reactivation of already existing slip lines. The combination of both these types of events represents the highest degree of spatial avalanche delocalization that spans the entire sample, forming a group of events that determine the truncation length scale of the truncated power-law scaling. These observations link the statistics of dislocation avalanches to a microstructural observable. KW - High-entropy alloy KW - Dislocation avalanches PY - 2021 U6 - https://doi.org/10.1103/PhysRevMaterials.5.043604 SN - 2475-9953 VL - 5 IS - 4 SP - 3604 PB - American Physical Society CY - College Park, MD AN - OPUS4-52458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -