TY - JOUR A1 - Elsayed, H. A1 - Zocca, Andrea A1 - Bernardo, E. A1 - Wirth, Cynthia A1 - Günster, Jens A1 - Colombo, P. T1 - Development of bioactive silicate-based glass-ceramics from preceramic polymer and filler N2 - 2014AbstractWollastonite/apatite glass-ceramics have been successfully prepared by a novel approach, consisting of the heat treatment of a silicone resinembedding micro-sized CaCO3particles, that act as reactive fillers, and bioactive glass powder in the SiO2–CaO–P2O5–K2O–Na2O–MgO–CaF2system. Zn-containing silicates, such as hardystonite (Ca2ZnSi2O7) and willemite (Zn2SiO4), were also developed either by directly mixing ZnOpowders with the glass, or by embedding them in the preceramic polymer, as additional fillers. KW - Additive manufacturing KW - Ceramics PY - 2015 U6 - https://doi.org/10.1016/j.jeurceramsoc.2014.09.020 SN - 0955-2219 SN - 1873-619X VL - 35 SP - 731 EP - 739 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-34955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Colombo, P. A1 - Wirth, Cynthia A1 - Günster, Jens T1 - Additive manufacturing of ceramics: Issues, potentialities, and opportunities N2 - Additive manufacturing (AM) is a technology which has the potential not only to change the way of conventional industrial manufacturing processes, adding material instead of subtracting, but also to create entirely new production and business strategies. Since about three decades, AM technologies have been used to fabricate prototypes or models mostly from polymeric or metallic materials. Recently, products have been introduced into the market that cannot be produced in another way than additively. Ceramic materials are, however, not easy to process by AM technologies, as their processing requirements (in terms of feedstock and/or sintering) are very challenging. On the other hand, it can be expected that AM technologies, once successful, will have an extraordinary impact on the industrial production of ceramic components and, moreover, will open for ceramics new uses and new markets. KW - Additive Fertigung KW - Keramik PY - 2015 U6 - https://doi.org/10.1111/jace.13700 SN - 0002-7820 SN - 1551-2916 VL - 98 IS - 7 SP - 1983 EP - 2001 PB - Blackwell Publishing CY - Malden AN - OPUS4-34961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Elsayed, H. A1 - Bernardo, E. A1 - Wirth, Cynthia A1 - Lopez-Heredia, M.A. A1 - Knabe, C. A1 - Colombo, P. A1 - Günster, Jens T1 - 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder N2 - Silicate bioceramics possess an excellent bioactivity; however, shaping them into complex geometries is still challenging. Therefore, this paper aims to present a new strategy for the shaping of a bioglass-ceramic with controlled geometry and properties starting from a glass powder combined with a preceramic polymer, i.e. a silicon resin, and reactive fillers. The powder-based three-dimensional (3D)-printing of wollastonite (CaSiO3)-based silicate bioceramic parts was demonstrated in this work. The resin plays a dual role, as it not only acts as a non-sacrificial binder for the filler powders in the printing process but it also reacts with the fillers to generate the desired bioceramic phases. The mechanical and physical properties, i.e. ball-on-three-balls test, density, porosity and morphology, were evaluated in 3D-printed discs. These samples possessed a total porosity around 64 vol% and a biaxial flexural strength around 6 MPa. The raw materials used in this work also enabled the 3D-printing of scaffolds possessing a designed multi-scale porosity, suitable bioceramic phase assemblage and a compressive strength of 1 MPa (for cylindrical scaffolds with total porosity ~80 vol%). Solubility in TRIS/HCl and in vitro assays, i.e. viability, cytotoxicity and apoptosis assays, were also performed. In vitro tests indicated good cell viability and no cytotoxicity effect on the cells. KW - KNN KW - Glass microspheres PY - 2015 U6 - https://doi.org/10.1088/1758-5090/7/2/025008 SN - 1758-5082 VL - 7 IS - 2 SP - 025008 PB - IOP Publ. CY - Philadelphia AN - OPUS4-34957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -