TY - JOUR A1 - Nelson, G. A1 - Boehm, U. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Brown, C. M. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L, A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Alexopoulos, I. A1 - Aumayr, K. A1 - Avilov, S. A1 - Bakker, G.-J. A1 - Bammann, R. R. A1 - Bassi, A. A1 - Beckert, H. A1 - Beer, S. A1 - Belyaev, Y. A1 - Bierwagen, J. A1 - Birngruber, K. A. A1 - Bosch, M. A1 - Breitlow, J. A1 - Cameron, L. A. A1 - Chalfoun, J. A1 - Chambers, J. J. A1 - Chen, C.-L. A1 - Conde-Sousa, E. A1 - Corbett, A. D. A1 - Cordelieres, F. P. A1 - Del Nery, E. A1 - Dietzel, R. A1 - Eismann, F. A1 - Fazeli, E. A1 - Felscher, A. A1 - Fried, H. A1 - Gaudreault, N. A1 - Goh, W. I. A1 - Guilbert, T. A1 - Hadleigh, R. A1 - Hemmerich, P. A1 - Holst, G. A. A1 - Itano, M. S. A1 - Jaffe, C. B. A1 - Jambor, H. K. A1 - Jarvis, S. C. A1 - Keppler, A. A1 - Kirchenbuechler, D. A1 - Kirchner, M. A1 - Kobayashi, N. A1 - Krens, G. A1 - Kunis, S. A1 - Lacoste, J. A1 - Marcello, M. A1 - Martins, G. G. A1 - Metcalf, D. J. A1 - Mitchell, C. A. A1 - Moore, J. A1 - Mueller, T. A1 - Nelson, M. S. A1 - Ogg, S. A1 - Onami, S. A1 - Palmer, A. L. A1 - Paul-Gilloteaux, P. A1 - Pimentel, J. A. A1 - Plantard, L. A1 - Podder, S. A1 - Rexhepaj, E. A1 - Royon, A. A1 - Saari, M. A. A1 - Schapman, D. A1 - Schoonderwoert, V. A1 - Schroth-Diez, B. A1 - Schwartz, S. A1 - Shaw, M. A1 - Spitaler, M. A1 - Stoeckl, M. T. A1 - Sudar, D. A1 - Teillon, J. A1 - Terjung, S. A1 - Thuenauer, R. A1 - Wilms, C. D. A1 - Wright, G. D. A1 - Nitschke, R. T1 - QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy JF - Journal of microscopy N2 - A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated, quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist’s experiments, while more than half have even failed to reproduce their own experiments1. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique2,3. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g., DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE4), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common Standards and guidelines for quality assessment and reproducibility5. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative6 was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models7,8, and tools9,10, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper 1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; 2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of Stakeholders including, researchers, imaging scientists11, bioimage analysts, bioimage informatics developers, corporate partners, Funding agencies, standards organizations, scientific publishers, and observers of such; 3) outlines the current actions of the QUAREPLiMi initiative, and 4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics. KW - Fluorescence KW - Microscopy KW - Quality assurance KW - Comparability KW - Imaging KW - Standards KW - Reference materials KW - Reliability KW - Data KW - Reference data KW - Biology KW - Medicine KW - Life science PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530629 DO - https://doi.org/10.1111/jmi.13041 SN - 1365-2818 VL - 284 IS - 1 SP - 56 EP - 73 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-53062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klingelhoeffer, Hellmuth A1 - Aegerter, J. A1 - Scherm, T. A1 - Schenuit, E. A1 - Sotheran, S. A1 - Loveday, M. A1 - Bosch, P. A1 - Bloching, H. A1 - Olbricht, Jürgen A1 - McEnteggart, I. T1 - Discussion on "Analysis on the issues in ISO 6892-1 and TENSTAND WP4 report based on the data of confirm tests by 21 laboratories" JF - Journal of Testing and Evaluation N2 - The authors, Li et al., of the paper entitled “Analysis on the Issues in ISO 6892-1 and TENSTAND WP4 Report Based on Data to Confirm Tests by 21 Laboratories” (J. Test. Eval. DOI: 10.1520/JTE20150479 (online only)) have expressed views that the authors of this rebuttal believe to be based on fundamental misunderstandings and misinterpretations of the tensile testing standard ISO 6892-1:2009, ISO 6892-1:2016, and its former versions, thus leading to erroneous conclusions. This refutation is intended to clarify the understanding of ISO 6892-1 and to address the misunderstandings and the misinterpretations of the authors of the paper. The present standard ISO 6892-1:2016 has a long history dating back to the 1970s. At that time, the tensile testing procedure was standardized on the National and International scale in parallel. To understand the present standard, the knowledge of the history helps to understand the background of details of the testing procedure implemented today. The history of the tensile testing standard has been discussed extensively during the annual international standardization meeting of ISO committee TC 164 SC1 for the last few years, at which some of the authors of the Li et al. paper attended. The authors continue to disagree with facts that were agreed by the consortium of the European research project TENSTAND and by the present international experts involved in ISO TC 164 SC1. It appears that the principal objective of the authors regarding their present publication was to increase the testing speed during tensile testing. However, the international standardization community has previously declined similar proposals by some of the authors. Many arguments presented by Li et al. were thus refuted. The conclusions of their paper are misleading and the international standardization community for tensile testing refused to revise the present standard, ISO 6892-1 (2016), according the authors’ proposals. KW - Tensile testing procedure KW - ISO 6892-1 KW - TENSTAND WP4 Final Report PY - 2017 DO - https://doi.org/10.1520/JTE20160526 SN - 0090-3973 SN - 1945-7553 VL - 45 IS - 3 SP - 1105 EP - 1114 PB - ASTM International CY - West Conshohocken, PA, USA AN - OPUS4-40267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klingelhöffer, Hellmuth A1 - Aegerter, J. A1 - Scherm, T. A1 - Schenuit, E. A1 - Sotheran, S. A1 - Loveday, M. A1 - Bosch, P. A1 - Bloching, H. A1 - Olbricht, Jürgen A1 - McEnteggart, I. T1 - Discussion on “Analysis on the issues in ISO 6892-1 and TENSTAND WP4 report based on the data of confirm tests by 21 laboratories” by H. Li, X. Zhou, J. Shen, and D. Luo. The regular article was published in journal of Testing and Evaluation, Vol. 45, No. 3, 2017, pp. 723–731, doi:10.1520/ JTE20150479. ISSN 0090-3973 JF - Journal of Testing and Evaluation N2 - The authors, Li et al., of the paper entitled “Analysis on the Issues in ISO 6892-1 and TENSTAND WP4 Report Based on Data to Confirm Tests by 21 Laboratories” (J. Test. Eval. DOI: 10.1520/JTE20150479 (online only)) have expressed views that the authors of this rebuttal believe to be based on fundamental misunderstandings and misinterpretations of the tensile testing standard ISO 6892-1:2009, ISO 6892-1:2016, and its former versions, thus leading to erroneous conclusions. This refutation is intended to clarify the understanding of ISO 6892-1 and to address the misunderstandings and the misinterpretations of the authors of the paper. The present standard ISO 6892-1:2016 has a long history dating back to the 1970s. At that time, the tensile testing procedure was standardized on the National and International scale in parallel. To understand the present standard, the knowledge of the history helps to understand the background of details of the testing procedure implemented today. The history of the tensile testing standard has been discussed extensively during the annual international standardization meeting of ISO committee TC 164 SC1 for the last few years, at which some of the authors of the Li et al. paper attended. The authors continue to disagree with facts that were agreed by the consortium of the European research project TENSTAND and by the present international experts involved in ISO TC 164 SC1. It appears that the principal objective of the authors regarding their present publication was to increase the testing speed during tensile testing. However, the international standardization community has previously declined similar proposals by some of the authors. Many Arguments presented by Li et al. were thus refuted. The conclusions of their paper are misleading and the international standardization community for tensile testing refused to revise the present standard, ISO 6892-1 (2016), according the authors’ proposals. KW - Tnsile testing KW - ISO 6892-1 KW - TENSTAND WP4 Report PY - 2017 UR - www.astm.org DO - https://doi.org/10.1520/JTE20160526 SN - 0090-3973 VL - 45 IS - 3 SP - 1105 EP - 1114 PB - ASTM CY - West Conshohocken, PA, USA AN - OPUS4-46690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -