TY - JOUR A1 - Erhard, Anton A1 - Otremba, Frank A1 - Mohr, F. A1 - Kilian, R. T1 - Alloy 800 steam generator tube stress corrosion cracks - detection and root cause KW - Tube inspection PY - 2012 SN - 0007-1137 VL - 54 IS - 6 SP - 1 EP - 5 PB - British Institute of Non-Destructive Testing CY - Northampton AN - OPUS4-26006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erhard, Anton A1 - Schuler, X. A1 - Otremba, Frank T1 - A new concept for steam generator tube integrity assessment N2 - Steam generator (SG) tubes are part of the primary circuit of pressurised water reactors and therefore also part of the pressure retaining boundary components. Furthermore, steam generator tubes are the components which guarantee the separation between the primary and secondary circuits. Therefore the knowledge of the loss of tube integrity as soon as possible is an essential. Optimised nondestructive testing methods based on the eddy current array technique are used to find material degradation, especially intergranular stress corrosion cracks during the periodical in-service inspection. These methods are supported by the measurement of the leakage rate during operation based on radioactivity and Tritium measurement regarding a high crack grows. Shutdown criteria depending on leakage rates which are described in the operation procedures but there are no specifications about the conditions for the measured leakage. Is the leakage coming from a single crack or are there multiple cracks or is this the leakage of a critical crack. With the help of FE calculations answer about the uncertainties of leakage rate versus critical crack grows were found. Shutdown criteria must guarantee to avoid critical crack sizes, i.e. between the measured tritium activity and the critical crack size must be a safety gap. KW - Steam generator tubes KW - Crack detection KW - Non destructive testing KW - Axial cracks KW - Critical crack sizes KW - Crack opening area KW - Leakage PY - 2012 DO - https://doi.org/10.1016/j.nucengdes.2012.04.014 SN - 0029-5493 SN - 1872-759X VL - 249 SP - 297 EP - 303 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-26025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blees, Christian A1 - Balke, Christian A1 - Otremba, Frank T1 - Plattenbrandprüfungen mit reaktiven Brandschutzbeschichtungen für Gastanks - Ein Vergleich zwischen Kleinprüfstand und 1-m³-Ofen N2 - In der Vergangenheit führte die Bundesanstalt für Materialforschung und -prüfung (BAM) zahlreiche Tankbrandversuche mit und ohne Sicherheitseinrichtungen durch. Dabei stellte sich heraus, dass Gastanks mit nicht ausreichend dimensionierten Sicherheitseinrichtungen bei einer äußeren thermischen Belastung innerhalb von 6 bis 10 min in Form eines BLEVE (Boiling Liquid Expanding Vapour Explosion) versagen können. Um die Feuerwiderstandsdauer eines Tanks zu erhöhen, besteht die Möglichkeit, den Tank u. a. mit einer sog. reaktiven Brandschutzbeschichtung zu versehen. Bei einer Temperatureinwirkung ab ca. 200 °C (produktabhängig) beginnt die Schicht aufgrund einer thermochemischen Reaktion aufzuschäumen. Die Tankwand wird dabei temporär vor einer weiteren schnellen Erwärmung geschützt. PY - 2012 SN - 2191-0073 VL - 2 IS - 1/2 SP - 27 EP - 30 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-25438 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank T1 - Gashochdruckleitungen T2 - Ruhrgas Meeting Gashochdruckleitungen CY - Essen, Germany DA - 2012-01-25 PY - 2012 AN - OPUS4-25415 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank T1 - Performance of dangerous goods tanks in a fire T2 - ASME Intrnational Mechanical Congress and Exposition CY - Houston, TX, USA DA - 2012-11-09 PY - 2012 AN - OPUS4-27082 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank T1 - Strukturoptimierung von Rahmenwerken von Druckgasbehältern in Containereinheiten T2 - BAM / IGV Jahresgespräch 2013 CY - Berlin, Germany DA - 2013-02-19 PY - 2013 AN - OPUS4-27859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank T1 - Forschen für die Sicherheit T2 - Gefahrgut-Techniktage 2013 CY - Hamburg, Germany DA - 2013-02-25 PY - 2013 AN - OPUS4-27860 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erhard, Anton A1 - Otremba, Frank A1 - Mohr, F. A1 - Kilian, R. T1 - Alloy 800 steam generator tube stress corrosion cracks - Detection N2 - Intergranular stress corrosion cracking (IGSCC) in Alloy 800 steam generator tubes was until recently an unknown damage mechanism for this material. But in the meanwhile such cracks were detected within the tube sheet between upper and lower mechanical tube expansion and in the outer tube bündle periphery. The detection and the sizing of such defects were not reliable with the common NDT methods. Steam generator (SG) tube integrity constitutes the main barrier against release of activity to the secondary Circuit. When through wall cracks occur, primary water can leak into the secondary circuit due to the influence of the pressure difference between the primary and secondary circuit. Such cracks may have safety relevance if the crack growth is not negligible. Therefore optimized inspection methods are necessary fortube integrity assessment. The overall requirements in this particular case are to guarantee the tube integrity in the time between the periodically in-service inspections until the next inspection by placing special emphases of NDT methods. In the present contribution, NDT methods for the inspection of defects like IGSCC are presented. Some Statements about the root cause for this special degradation mechanism will also be described. T2 - 9th International conference on NDE in relation to structural integrity for nuclear and pressurized components CY - Seattle, USA DA - 22.05.2012 PY - 2013 SN - 978-92-79-28212-6 DO - https://doi.org/10.2790/74243 SN - 1018-5593 SP - 862 EP - 870 AN - OPUS4-28886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pötzsch, Klaus-Michael A1 - Würsig, Andreas A1 - Otremba, Frank T1 - Das Gefahrgutrecht für Tanks und die technische Norm N2 - Im Gefahrgutrecht, insbesondere im Bereich der Gefahrguttanks für den Landverkehr, hat der Bezug zur technischen Norm aufgrund der Rechtsfortentwicklung eine fundamentale Bedeutung erlangt. Damit die Interessen der deutschen Tankhersteller genügend Berücksichtigung finden können, ist die kontinuierliche Mitarbeit der betroffenen Wirtschaftskreise in den nationalen und internationalen Normungsgremien erforderlich. Dieser Zusammenhang, der für den einzelnen Hersteller mit erhöhtem Aufwand verbunden ist, wird von den betroffenen Kreisen nicht flächendeckend wahrgenommen. Der Beitrag analysiert Gründe hierfür und macht Vorschläge zu leichten Korrekturen in der inhaltlichen Ausrichtung der Normung. PY - 2013 SN - 2191-0073 VL - 3 IS - 7/8 SP - 22 EP - 27 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-29016 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Schwarzer, Stefanie A1 - Otremba, Frank ED - Pierucci, S. ED - Klemes, J.J. ED - De Rademaeker, E. ED - Fabiano, B. ED - Buratti, S.S. T1 - Comparison of the operating life of tank containers, tank vehicles and rail cars for the carriage of dangerous goods in practice, analysis of causes of damage N2 - More than 400 Mt of dangerous materials are transported in Germany every year, of which 150 Mt are by road. Tank containers, tank vehicles and rail tank cars are used for the carriage of dangerous goods in large quantities. Data on the operating life of tanks are only available, in practice, to a minor degree. They are only partly published, mainly after accidents. The BAM-List - Requirements for Tanks for the Carriage of Dangerous Goods, which has compatibility evaluations of metallic and polymeric materials, has been the basis for substance-related prototype approvals for tank containers and portable tanks designed for the carriage of dangerous goods by the BAM since publication of the first edition in 1989. These data are also used for the approval of rail tank cars and road tank cars and are used as a source of knowledge not only in Germany but also worldwide. Tank leakages caused by tanks or rail tank cars being made of tank and sealing materials which are not resistant to the fill goods are avoided by using the material resistance data of the BAM. Corrosion damage is among the main causes of damage. Uniform and non-uniform area corrosion without mechanical stress in aqueous substances is one of the most frequent types of corrosion during the transport of chemicals in tanks. Much damage by pitting corrosion occurs during the transport of substances containing chlorides or substances which separate chloride ions in the presence of moisture. Operational stresses are caused by the effects of both the road and the dangerous goods being transported. Mechanical damage often results from long-term overstressing and occurs after longer operating times. Operational failures cause damage which may appear during the service of tank containers, road tank cars or rail tank cars. The damage results from the inattention of employees when opening and closing the valves. Traffic accidents also cause damage to tanks and frames. Many cases of damage are due to weld area cracks resulting from four basic errors in construction, material, manufacturing and operation. Manufacturing errors can be undetected and the starting point of cracks which only grow under service conditions. Manufacturing errors result from variations in measurement and design, fittings, state of surface (hardness, abrasiveness) and mechanical surface damage (scratches, cracks). Incorrectly welded joints and errors during mechanical deformation are typical mistakes when installing the component parts. Variations in the wall thickness or combinations of different materials lead to manufacturing errors too. A lot of tanks are not used for the transport of dangerous goods before the end of their service life as they do not fulfil the revised technical safety requirements in the Dangerous Goods Regulations. Predictions in the BAM-List based on literature data and corrosion test results are reflected in the service (operating) life. Rail tank cars made of carbon steel, for example, which are mainly used for the transport of petroleum products, can achieve a service life of 40 – 50 y. Rail tank cars produced of austenitic CrNi- or CrNiMo-steel can reach an operating life of at least 30 y, whereby the corrosiveness of the transport substances plays an important role. T2 - 14th International symposium on loss prevention and safety promotion in the process industries CY - Florence, Italy DA - 12.05.2013 KW - Gefahrguttanks KW - Eisenbahnkesselwagen KW - Schadensursachen KW - Lebensdauer PY - 2013 SN - 978-88-95608-22-8 DO - https://doi.org/10.3303/CET1331094 SN - 1974-9791 N1 - Serientitel: Chemical engineering transactions – Series title: Chemical engineering transactions IS - 31 SP - 559 EP - 564 PB - AIDIC, Associazione Italiana di Ingegneria Chimica CY - Milano AN - OPUS4-28568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Konersmann, Rainer A1 - Otremba, Frank T1 - Vergleich von Risiken N2 - Vielen Entscheidungsprozessen geht ein Vergleich voraus. Bei einem Produktvergleich werden dazu Kriterien festgelegt, etwa der Kaufpreis, die Güte, Haltbarkeit, Handhabung usw. Der Testsieger ist meist derjenige, der die am höchsten bewerteten Kriterien erfüllt. Voraussetzung für derartige Vergleiche ist also die Gleichartigkeit der Vergleichsobjekte. Risiken untereinander zu vergleichen ist komplizierter. Die Notwendigkeit von Risikovergleichen ergibt sich, wenn nur unklare Vorstellungen, z. B. über die Risiken einer neuen Transporttechnologie, existieren und keine Erfahrungswerte zur Verfügung stehen. Aus bekannten und akzeptierten Risiken soll mittels eines Vergleichs die Tolerierbarkeit eines (noch) unbekannten Risikos abgeleitet werden. Der Beitrag setzt sich mit der Problematik von Risikovergleichen auseinander. KW - Risikovergleich Verkehrsmittel KW - Risikoakzeptanz KW - Qualitative Vergleichskriterien PY - 2013 SN - 2191-0073 VL - 3 IS - 6 SP - 32 EP - 37 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-28654 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank T1 - Alloy 800 steam generator tube stress corrosion cracks - detection and root causes T2 - Coteq 2013 CY - Porto de Galinhas, Brazil DA - 2013-06-18 PY - 2013 AN - OPUS4-28720 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reich, Franziska A1 - Otremba, Frank A1 - Würsig, Andreas T1 - Fail-safe? A study about the integrity of safety valves for tanks for dangerous goods N2 - In Europe, tanks designed on different safety philosophies are used for transporting one and the same liquid dangerous goods (Krautwurst, 2011). Owing to this circumstance, the BAM was commissioned by the BMVBS to conduct a research project designed to analyse and assess the equipment of tanks. Furthermore in these project were researched some failure mechanism of pressure relief devices (PRD). Based on the knowledge gained, possible solutions were worked out under safety-relevant aspects that would benefit tank transport by providing a lower hazard potential. Besides looking at the mode of operation and the construction of PRV, their blow-off characteristics and total flow rate are considered from a safety engineering point of view. Based on in-depth studies, a concept for and the further approach to examinations of the failure limits of PRD, especially of spring loaded relief valves, was developed and comprehensively described in the report “The use of safety devices, particularly safety valves, on transport containers” (Pötzsch, Reich, & Jochems, 2011). The purpose of this study was to investigate failure causes of safety valves by normal modes and accidental fire heat loads. A series of investigations for different influences using safety valves for tanks were obtained. Testing vibration modes and corrosion presents some design limits. Experimental study of a pressure vessel engulfing in fire identify significant design limits. The complete set of results provides direct information of fail-safe modes and discusses the usage. T2 - ASME 2013 International mechanical engineering congress and exposition CY - San Diego, CA, USA DA - 15.11.2013 KW - Safety valves KW - Transporttanks KW - Dangerous goods KW - Fire prooving KW - Response behavior PY - 2013 IS - IMECE2013-62204 SP - 1 EP - 5 AN - OPUS4-29717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank T1 - Integrity of aluminium gas receptacle T2 - IMECE 2013 CY - San Diego, CA, USA DA - 2013-11-15 PY - 2013 AN - OPUS4-29668 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero Navarrete, J. A. A1 - Otremba, Frank A1 - Lozano Guzmán, A. A. T1 - Experimental-theoretical modelling of the lateral sloshing in rail tankers N2 - The objective of this paper is to describe and to validate a simplified pendulum-analogy model to simulate the interaction of a liquid cargo with ist carrying vehicle. The resulting testing rig consists of a rectangular container, spring supported on a two wheelset-bogie having a scale down of 1/10 with respect to a full-size equipment. The testing rig is used to validate a simple pendulum-based, simplified three degree-of-freedom mathematical model of the response of a partially filled container to lateral accelerations. The length of the pendulum is set according to validated methodologies. The resulting mathematical scheme reveals a high correlation with the experimental output, on the order of 99%, while some other performance measures, related to the peak forces and the range of variation of the wheel-rail forces, also show good concordance with the experimental results. KW - Sloshing KW - Rail tankers KW - Pendulum analogy KW - Experimental modelling KW - Mechanical fatigue PY - 2021 DO - https://doi.org/10.1504/ijhvs.2021.117504 VL - 28 IS - 3 SP - 435 EP - 454 AN - OPUS4-53101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero Navarrete, J. A. T1 - Assesing rail damage in turns due to lateral load transfer N2 - A testing procedure is proposed and used, to estimate the rail damage potentials of variations in both, the height of the cargo´s center of gravity and the railway car suspension´s spring constant. The experimental setup consisted of a tilt table that slowly exerted an increasing lateral acceleration on a two-axle bogie-type vehicle equipped with a spring supported container. The potential damaging effect derived from the resulting lateral load transfer, was assessed on the basis of the fourth-power law. Results suggest that the cargo having a higher center of gravity could be more damaging to the outside rail when compared with the effect of the shorter center of gravity of the cargo, in arrange from0.94% to 3.17%, as a function of the spring constant of the suspension. Consequently, and comparatively, there would be a long-term damaging effect on the rail when having a cargo with a higher center of gravity, so that specific cargo, having a high center of gravity, would be more aggressive to the infrastructure. On the other hand, for the range of time rate changes of the lateral acceleration, it was not found a consistent trend regarding the effect of the value of the spring constant on the magnitude of the load transfers. T2 - ASME 2024 CY - Portland, OR, USA DA - 17.11.2024 KW - Rail demage KW - Lateral load transfer PY - 2024 AN - OPUS4-61784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - A testing facility to assess railway car infrastructure damage N2 - Wheel forces generate stresses in the rail as a function of several vehicle and infrastructure characteristics and operating conditions. The different components of the wheel forces develop strains in the rail which contain an elastic and hysteretic (irreversible) components. The irreversible deformations of the rail would be associated with locomotive energy losses. In this paper, a testing facility is proposed to indirectly characterize the level of stresses in the rail, in terms of the energy that is lost during tuming maneuvers. Different potentially influential factors are considered, including the friction at the Center plate, the wheelbase length, the distance between bogies and the radius of the curved track. The change in the potential energy during a U-turn displacement is measured. In this respect, an experimental model under this operating principle, aimed at validating such a principle of Operation, reveals a significant effect of the friction at the center plate on the energy lost during turning maneuvers, and consequently, on the level of stresses in the rail. T2 - COMPRAIL 2020 - 17th International Conference on Railway Engineering Design & Operation 2020 CY - Online meeting DA - 01.07.2020 KW - Energy losses in transportation KW - Experimental methods KW - Friction energy KW - Rail damage KW - Turning forces KW - Wheel forces PY - 2020 DO - https://doi.org/10.2495/TDI-V4-N2-142-151 SN - 2058-8305 VL - 4 IS - 2 SP - 142 EP - 151 PB - WitPress AN - OPUS4-51125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Otremba, Frank A1 - Hildebrand, R. A1 - Romero Navarrete, J. A. A1 - Sklorz, Christian ED - Otremba, Frank T1 - A simplified analytical approach on the dynamic pressures in cylindrical vertical tanks N2 - A simplified methodology is proposed to estimate the dynamic pressures developed within partially filled cylindrical vertical tanks when subjected to earthquake-related horizontal accelerations. The total pressure at the bottom of the tank is calculated as the superposition of vertical and horizontal pressures. While the magnitude of the vertical pressure depends on the free surface height of the liquid, the horizontal pressure depends on the magnitude of the horizontal acceleration and on the diameter of the tank. The liquid free surface oscillation angle is simulated based upon the principles of the simple pendulum analogy for sloshing. The length of the pendulum, however, is set on the basis of a methodology to calculate the free sloshing frequency of partially filled containers. Such a methodology is experimentally verified in this work. The outputs of the model for full scale situations, suggest that the lateral perturbation - sloshing phenomenon (earthquake effect) can generate an increase in the total pressure of 56% above the no lateral perturbation situation, further suggesting that such an overpressure should be taken into account when designing tanks that could be potentially subjected to earthquake-related perturbations. KW - Vertical cylindrical tanks KW - Pendulum analogy KW - Experimental approach KW - Sloshing, transition matrix approach KW - Hazmat PY - 2021 SN - 978-981-15-8273-8 SP - 1 EP - 15 PB - Springer AN - OPUS4-51982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Jauregui-Correa, J. C. A1 - Otremba, Frank A1 - Romero-Navarrete, José A. A1 - Hurtado-Hurtado, G. ED - Pucheta, M. ED - Cardona, A. ED - Preidikman, S. ED - Hecker, R. T1 - Determination of the Effect of Sloshing on the Railcar-Track Dynamic Behavior N2 - This paper presents the study of the impact caused by a liquid Cargo on a railway infrastructure. The dynamic behavior of a tank car corresponds to a multibody dynamic system with several degrees of freedom. This study’s data were obtained from a scale experimental fixture consisting of a track and a railcar with a tank. The track was instrumented with strain gauges and the railcar with accelerometers. The data showed non-periodic and periodic terms; therefore, the results were analyzed with the Empirical Mode Decomposition method (EMD). It was found that the EMD identified the signal components that were related to the sloshing. These components represent the mode shapes of the original signal. The location of the sloshing in the track was found applying spectrograms to the accelerometer data. This paper’s experimental outputs suggest that the sloshing effect is detectable at the track and in the vehicle dynamics. KW - Sloshing effect KW - Empirical Mode Decomposition KW - Wheel/track interaction KW - Multibody dynamics PY - 2021 SN - 978-3-030-88750-6 DO - https://doi.org/10.1007/978-3-030-88751-3_14 SP - 131 EP - 140 PB - Springer Nature Switzerland AG AN - OPUS4-53561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Lozano Guzman, A. A. T1 - Estimation of the effect of the driving style on pollutants emission by heavy trucks N2 - Different approaches have been attempted so far to reduce fuel consumption and linked pollutants, including vehicle equipment and design, with rational driving style being recognized as a potential source of fuel savings. However, no specific methodology had been suggested so far to assess fuel economy of driving other than the fuel consumed itself. In this paper, the Standard deviation of driving acceleration has been found to be directly associated to fuel consumption, so that the less dispersion of the driving acceleration, produces the lower fuel consumptions and emissions. Such metric could be thus used to assess driving style. KW - Driving style KW - Fuel consumption KW - Stored energy KW - GPS data KW - Simulation KW - Particle emissions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511540 UR - https://www.iaras.org/iaras/home/caijes/estimation-of-the-effect-of-the-driving-style-on-pollutants-emission-by-heavy-trucks SN - 2367-8941 VL - 5 SP - 220 EP - 226 PB - IARAS CY - Sofia AN - OPUS4-51154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - A method to assess the gravity response efficiency of a truck N2 - In spite that transport activities do not represent the biggest contributor of pollutants emissions, their reduction has been a priority as some other externalities are associated to such emissions and to the transport itself. A crucial element to characterize the behavior of the vehicles against the environment are the losses that such vehicles exhibit in a passive way, that is, without any involvement of power conditions. The energy loses due to the rolling, the drag and to the friction in mechanical components, have been assessed so far in terms of the stopping acceleration when the vehicle idles on a ramp. However, such a testing procedure produces some uncertainties due to the dynamic conditions that are considered. To avoid such critical limitations, in this paper a testing procedure and facility are proposed, which are based on static conditions of the vehicle at the initiation and at the ending of the test, which are assumed to provide a better reliability to the testing. Some preliminary theoretical analysis should be made in order to validate the operational principles proposed herein for such testing facility. KW - Road tankers KW - Energy efficiency KW - Environmental assessment KW - Gravity response KW - Transportation energy KW - Rolling resistance KW - Drag resistance PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511530 UR - https://www.iaras.org/iaras/home/caijes/a-method-to-assess-the-gravity-response-efficiency-of-a-truck SN - 2367-8941 VL - 5 SP - 213 EP - 219 PB - IARAS CY - Sofia AN - OPUS4-51153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hurtado-Hurtado, G. A1 - Morales-Velazquez, L. A1 - Valtierra-Rodríguez, M. A1 - Otremba, Frank A1 - Jáuregui-Correa, J. C. T1 - Frequency Analysis of the Railway Track under Loads Caused by the Hunting Phenomenon N2 - Hunting is a potentially dangerous phenomenon related to the lateral oscillation of the wheels that impacts the rails and causes the wear of the infrastructure’s components. Therefore, the analysis and timely detection of hunting can lead to the application of corrective maintenance tasks, reducing damages, and costs and even derailments as a result. In this work, the vibration response of a finite element model of a rail with hunting-induced loads by a single wheel is analyzed in three directions: longitudinal, lateral, and vertical. The contact patch forces are calculated by means of Simpack® using the Kalker linear theory and the contact Hertz theory. The system is solved by using the Newmark-_ approach. The results of the deflection and vibration analysis, following the proposed methodology, show how the different characteristics of the loads impact the rail. KW - Continuous wavelet transform KW - Empirical mode decomposition KW - Finite element method KW - Frequency analysis KW - Hunting phenomenon KW - Mechanical modelling KW - Rail vibrations PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551517 UR - https://www.mdpi.com/2227-7390/10/13/2286/htm# DO - https://doi.org/10.3390/math10132286 VL - 10 IS - 13 SP - 1 EP - 17 PB - MDPI AN - OPUS4-55151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jauregui-Correa, J. C. A1 - Morales-Velazquez, L. A1 - Otremba, Frank A1 - Hurtado-Hurtado, G. T1 - Method for predicting dynamic loads for a health monitoring system for subway tracks N2 - This paper presents a method for processing acceleration data registered on a train and determining the health condition of a subway’s substructure. The acceleration data was converted into a dynamic deformation by applying a transfer function defined using the Empirical Mode Decomposition Method. The transfer function was constructed using data produced on an experimental rig, and it was scaled to an existing subway system. The equivalent deformation improved the analysis of the dynamic loads that affect the substructure of the subway tracks because it is considered the primary load that acts on the track and substructure. The acceleration data and the estimated deformations were analyzed with the Continues Wavelet Transform. The equivalent deformation data facilitated the application of a health monitoring system and simplified the development of predictive maintenance programs for the subway or railroad operators. This method better identified cracks in the substructure than using the acceleration data. KW - Health monitoring KW - Transfer function KW - Railroad KW - Substructure failures KW - Dynamic loads PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557480 DO - https://doi.org/10.3389/fmech.2022.858424 SN - 2297-3079 VL - 8 SP - 1 EP - 16 PB - Frontiers Media CY - Lausanne AN - OPUS4-55748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hurtado-Hurtado, G. A1 - Morales-Velazquez, L. A1 - Otremba, Frank A1 - Jáuregui-Correa, J. C. T1 - Railcar Dynamic Response during Braking Maneuvers Based on Frequency Analysis N2 - The dynamic response of a vehicle during braking is influenced by the tangential forces developed at the wheel-rail’s contact surface. The friction coefficient affects the load transfer from the wheel’s tread to the vehicle. In this work, the vibrations of a scale-down railway vehicle are monitored during braking and their relationship with the friction coefficient between wheel and rail is found out. The vehicle is instrumented with encoders, accelerometers, and is controlled via Bluetooth. The tests are carried out with clean and friction-modified rails. The tangential forces transmitted from the wheel to the railcar’s body are visualized in time and frequency using a proposed correlation algorithm based on the outputs of the ContinuousWavelet Transform (CWT). The results demonstrate that tangential forces have a significant impact on railway vehicles under conditions of high friction coefficients and large creep values. KW - Railway vibration measurements KW - Vibration signal analysis KW - Wheel-rail tangential forces KW - Railway braking forces KW - Wheel-rail friction coefficient PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572309 DO - https://doi.org/10.3390/app13074132 VL - 13 IS - 7 SP - 1 EP - 15 PB - MDPI AN - OPUS4-57230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - A lowering friction treatment for railway materials N2 - A facility is proposed in this paper to apply a selective carburizing process to the lateral faces of a railways´ head, aiming to increase its carbon content and to decrease the friction coefficient in case that the flange of the railway car wheel gets in contact with the rail during turning. Such a treatment would reduce the energy that is lost during the turning maneuvers performed by the vehicle, further improving the energy efficiency of the railway car. The facility consists of a furnace, which should be set next to the rails´ hot-rolling facility, in order to use the available enthalpy. The proposed furnace is equipped with what is necessary to avoid the decarbonization of the remaining rail material, based upon batteries of oxy-acetylene burners that are installed at the bottom of the furnace, on the opposite side to the carburizing surface. An experimental facility is necessary to validate the operational principles for the equipment proposed in this paper. On the other hand, a study should also be carried out to assess the effect of any rail welding process on the carburized surfaces. KW - Transport efficiency KW - Dry friction KW - Carburizing KW - Selective carburizing KW - Decarbonization KW - Furnace design PY - 2020 DO - https://doi.org/10.5185/amlett.2020.041498 VL - 11 IS - 4 SP - 2004198 PB - IAAM - VRBI Press AN - OPUS4-50958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - Vehicle’s components damage N2 - The failure of vehicle’s suspension components has contributed to road crashes, while their defective operation can deteriorate the fuel efficiency of the vehicles. In this context, and when compared with solid cargo transporters, the road tankers would tend to produce larger roll forces during turning, as the curved shape of the liquid cargo container, shifts upwards the centre of gravity of the cargo. With reference to a rectangular cargo container representing the solid cargo situation, the increase in the position due to elliptical and circular tank shapes, can attain a value of 17% (100% fill, circular tank). In this study, experimental results comparing the lateral load transfer due to solid and liquid cargoes, indicate that the average force increase on the vehicle’s load-receiver side due to a liquid cargo, is 4.3%. To analyse the fullscale situation of both situations, that is, the higher position of the centre of gravity and the shifting of the liquid cargo, a simplified model is developed. The outputs from such a model when subjected to realistic operating conditions (speed and turning radius), suggest that the higher position of the centre of gravity due to using a non-rectangular cargo container generates an average force increase of 4.9% on the side receiving the load transfer. The incorporation of the effect of the liquid cargo, through the simple pendulum analogy, suggests that such an average increases to 6.76%, with a maximum of 8.35% in the case of the elliptical tank at 75% fill level. It is found that the average liquid cargo effect is 5.44%, which should be compared with the 4.3% of the experiments. Road tankers components would thus have a relatively shorter load cycle life than those of the solid cargo trucks. KW - Liquid cargo KW - Load transfer KW - Roll reactions KW - Experimental modelling KW - Pendulum-analogy PY - 2020 DO - https://doi.org/10.1177/0954407020960543 VL - 235 IS - 2-3 SP - 446 EP - 454 PB - Sage Journals AN - OPUS4-51386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Hurtado-Hurtado, G. ED - Romero-Navarrete, José A. T1 - A Conceptual Design of a Self-Centering Centre Plate N2 - Turning maneuvers originate higher forces exerted on the rail and the loss of locomotive energy, at a rate that is function of several parameters that influence the magnitude of the developed horizontal wheel-rail forces, including the friction at the centre plate and the bogie´s yaw stiffness. However, such a friction at the contact surfaces of the centre plate is needed to mitigate the Hunting phenomenon when the train moves on straight track segments. In this paper, a self-centering centre plate is proposed, consisting of a lubricated centre plate, equipped with a spring- and damper-based self-centering mechanism. Simulation results of the proposed mechanism suggest that the energy performance in turns of a train car equipped with such self-centering centre plate is comparatively better, as the peak friction forces linked to the dry friction at the contact surfaces of current centre plate designs, are avoided. The assessment of the hunting performance of the proposed device in straight track segments is proposed as the continuation of this work. KW - Bogie´s yaw stiffness KW - Bogie´s yaw friction KW - Centre plate KW - Self-centering mechanism KW - Turning PY - 2020 UR - https://publications.waset.org/aerospace-and-mechanical-engineering SN - 1307-6892 VL - 14 IS - 9 SP - 376 EP - 382 AN - OPUS4-51241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kutz, Philipp A1 - Otremba, Frank A1 - Werner, Jan T1 - Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids N2 - This paper describes the testing methods used to determine the thermal properties of insulation materials and mechanical properties of materials used for the load-bearing structure for pressure tanks (up to 4 bar, relative) and cryogenic liquids (LNG, −166 °C to -157 °C at atmospheric pressure). Goal is to design a transportation tank that does not exceed 4 bars (relative) within 10 h, starting at atmospheric pressure. PUR-foam is a suitable material for the insulation. A 12,5 l small scale tank prototype reached 4 bar (relative) within 87 minutes, which is, regarding the influence of the size, a satisfying result. The mechanical properties change significantly at cryogenic temperatures. The bending modulus is similar at first, but decreases at a certain point by appr. 50 %. However, the maximum stress is much higher and could not be reached within this testing setup. T2 - 26th Assembly Advanced Materials Congress CY - Stockholm, Sweden DA - 10.06.2019 KW - GFRP KW - LNG KW - Lightweight design KW - Thermal properties KW - Mechanical prtoperties PY - 2020 DO - https://doi.org/10.5185/amlett.2020.011457 VL - 11 IS - 1 SP - 1 EP - 6 PB - VBRI Press AN - OPUS4-50216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Sklorz, Christian A1 - Martínez Madrid, M. T1 - Quasistatic rollover threshold of atmospheric road tankers N2 - Several geometrical analytical tools can be used for assessing the potential benefits of any alternative tank shape. The quasistatic evaluation of the cargo-vehicle behavior represents a fast way to objectively determine the roll stability benefits of any potentially new tank shape. In this paper, the geometrical, quasistatic rollover performance of a convex bottom tank shape is compared with that of standard tank shapes, finding that in spite of the lower position of the cargo´s center of gravity in such a tank shape for the un-perturbed condition, it has the same performance as the elliptical tank shape when subjected to Steady lateral acceleration. That as a result of the large cargo´s lateral displacement. Consequently, the combination of a lower center of gravity for the cargo when it is not perturbed, and a Minimum lateral shift due to lateral accelerations inputs, define the conditions for an ideal tank shape. T2 - CONIIN 2020 CY - Online meeting DA - 28.09.2020 KW - Tank shape KW - Road tankers KW - Center of gravity shifting KW - Quasistatic KW - Convex bottom KW - Geometrical analysis PY - 2020 SP - 1 EP - 6 AN - OPUS4-51388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Lozano Guzmán, A. A. T1 - An energy frame of reference to assess vehicle´s physical externalities N2 - Externalities of the road transportation are multidimensional in nature and involve the road-vehicle interaction under different environmental conditions. Estimating the pavement and vehicle damage potentials as a function of the condition sunder which such interaction takes place, is important to avoid accelerated or catastrophic damages in these systems. Such an assessing is crucial from the perspective of pricing the effects of the vehicle on the infrastructure and vice versa. The existing models for pricing such interaction, critically depends on gross average statistical models. In this paper, it is proposed a deterministic approach to realize such an assessment, based upon validated approaches for the pavement damage. The simulation scheme considers different degrees-of-freedom vehicle models, and a discrete asphalt pavement, that make possible the simulation of massive traffic situations on realistic road lengths. T2 - IMECE 2020 CY - Online meeting DA - 16.11.2020 KW - Energy KW - Frame KW - Assess KW - Vehicles PY - 2020 SP - 1 EP - 9 AN - OPUS4-51645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würsig, Andreas A1 - Otremba, Frank T1 - Neue FVK-Tanks in den Unmodellvorschriften sowie Ergebnisse aktueller Forschungsvorhaben N2 - 100 mm of PUR-foam give satisfying results in terms of thermal properties. The non-pressure testing methods gives reliable and repeatable results. Bending modulus of laminates does not change until the first damage occurs. After that, the bending modulus decreases by 50 % but max. stress is still higher than at room temperature. T2 - 25. Gefahrgutkongress MV CY - Rostock, Germany DA - 19.10.2021 KW - FVK-Tanks KW - Unmodellvorschriften KW - Forschungsvorhaben PY - 2021 AN - OPUS4-53570 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Jan A1 - Kutz, P. W. A1 - Otremba, Frank T1 - Testing of Small Scale Tank Prototypes under Cryogenic Conditions N2 - Climate change, CO2 reduction, resource efficiency are only 3 current keywords that describe the current industrial-economic situation. In order to influence climate change effectively, the conversion of supply systems with technically usable forms of energy must succeed in the next decade. The international network founded in Baku in 2015 bundles research activities in the broad field of energy supply and energy efficiency. Discuss current research approaches and results with scientists and experts from renowned universities and follow Azerbaijan's efforts to implement the energy revolution. T2 - Neseff 2020 CY - Online meeting DA - 28.09.2020 KW - Mud pumps KW - Mud circulation system KW - Pistons KW - Hydrostatic pressure KW - Friction wear KW - Ceramic liners KW - Tribology PY - 2020 SN - 978-3-940471-59-8 SP - 4 EP - 9 AN - OPUS4-52149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jauregui-Correa, J. C. A1 - Otremba, Frank A1 - Romero-Navarrete, José A. A1 - Hurtado-Hurtado, G. T1 - Determination of the effect of sloshing on the railcar-track dynamic behavior N2 - Liquid cargo has a significant impact on the interface wheel-track interaction. The sloshing affects the track-railcar's dynamic behavior. The effect is detectable at the track level and at the vehicle. Its characterization requires the combination of different techniques: Empirical Mode Decomposition (EMD) Time-Frequency Maps Sloshing occurred when significant perturbations happened in the railcar: The railcar entered a curve Reduction in its travel speed A railcar with a tank is a clear example of a multibody dynamic system with a nonlinear behavior. T2 - 7th International Symposium on Multibody Systems and Mechatronics - MuSMe 2021 CY - Córdoba, Argentina DA - 12.10.2021 KW - Liquid cargo KW - Wheel-track interaction KW - Sloshing affects KW - Vehicle PY - 2021 AN - OPUS4-53572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. A1 - Jáuregui Correa, J.C.A. T1 - Forces on rails in turns: A review N2 - Regardless of the mode of transportation, directional changes generate greater forces on the infrastructure as a result of the lateral load transfer and of the respective steering forces in the vehicles. In the case of Railway transportation, a concentrated damage occurs in the rail at the initiation of the turning maneuver, whose magnitude depends on the bogie´s yaw stiffness and on the level of friction at its centre plate. To mitigate such rail-damaging effects, some new designs have been proposed and used for the bogies´ wheelset. However, no new designs for the centre plate have been used. In this paper, a review of the causality for the forces arising during Railway Vehicle's turn negotiations, is presented, including the description of a modeling framework to analyze the influential Parameters for determining the magnitude of such forces. T2 - CONIIN 2020 CY - Online meeting DA - 28.09.2020 KW - Turning maneuvers KW - Rail damage KW - Yaw stiffness KW - Yaw resistance KW - Self-aligning bogies KW - Lateral load transfer KW - Steering forces PY - 2020 SP - 1 EP - 6 AN - OPUS4-51390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero Navarrete, J. A. T1 - Experimental Assessing of the Energy Transformation in Turns N2 - Turning maneuvers of rail vehicles involve demanding situations for the infrastructure because of the steering forces generated and the resultant lateral load transfers. Such forcing situation involves increased tangential forces that consume kinetic energy from the vehicle. While much attention has been paid in the literature to the damage in such infrastructure segments, the energy that is dissipated in these maneuvers, has not been explicitly addressed. In this paper, a specialized scale-down infrastructure is used to characterize the effect of the initial speed of the vehicle and its mass, on the magnitude of both the rail forces developed and the amount of dissipated energy during turning maneuvers. The outputs of the experiments suggest that most of the original kinetic energy is dissipated at the first portion of the turn. Also, that the magnitude of the wheel forces and the amount of dissipated energy, correlate. That is, a greater rail damage would correspond to greater energy dissipation. T2 - IMECE2022 CY - Columbus, OH, USA DA - 30.10.2022 KW - Turning maneuvers KW - Energy dissipation KW - Rail damage KW - Experimental approaches PY - 2022 SP - 1 EP - 6 AN - OPUS4-56334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero Navarrete, J. A. T1 - Experimental Assessing of the Energy Transformation in Turns N2 - Turning maneuvers of rail vehicles involve demanding situations for the infrastructure because of the steering forces generated and the resultant lateral load transfers. Such forcing situation involves increased tangential forces that consume kinetic energy from the vehicle. While much attention has been paid in the literature to the damage in such infrastructure segments, the energy that is dissipated in these maneuvers, has not been explicitly addressed. In this paper, a specialized scale-down infrastructure is used to characterize the effect of the initial speed of the vehicle and its mass, on the magnitude of both the rail forces developed and the amount of dissipated energy during turning maneuvers. The outputs of the experiments suggest that most of the original kinetic energy is dissipated at the first portion of the turn. Also, that the magnitude of the wheel forces and the amount of dissipated energy, correlate. That is, a greater rail damage would correspond to greater energy dissipation. T2 - IMECE2022 CY - Columbus, OH, USA DA - 30.10.2022 KW - Energy dissipation KW - Turning maneuvers KW - Rail damage KW - Experimental approaches PY - 2022 AN - OPUS4-56333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bradley, Ian A1 - Scarponi, G. E. A1 - Otremba, Frank A1 - Birk, A. M. T1 - An overview of test standards and regulations relevant to the fire testing of pressure vessels N2 - Fire exposure of storage and transportation vessels of hazardous materials (including pressure liquefied gases) can result in BLEVEs and other high-consequence incidents with large societal and economic impacts. To reduce risk most countries have numerous regulations, codes of practice and guidance notes covering the design, operation and maintenance of vessels and thermal protection systems. Yet despite such regulations there remains no internationally accepted fire test procedure for pressure vessel and accompanying thermal protection systems that is capable of meeting a range of regulatory requirements. This paper considers some of the regulations in place in the western world and considers the origin of these based on large and medium-scale testing conducted to date. It examines conditions found in these tests to propose a set of recommendations on which to base a standard method of test. These recommendations are proposed as being representative of a credible large pool fire scenario that may occur. KW - LPG KW - Pressure vessel KW - Test KW - BLEVE KW - Fire PY - 2021 DO - https://doi.org/10.1016/j.psep.2020.07.047 SN - 0957-5820 VL - 145 SP - 150 EP - 156 PB - Elsevier CY - Amsterdam AN - OPUS4-51139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bradley, Ian A1 - Otremba, Frank A1 - Scarponi, G. E. A1 - Romero-Navarrete, José A. ED - Ao, S.-I. ED - Kim, H. K. ED - Amouzegar, M. A. T1 - Boiling and thermohydraulics within pressure vessels N2 - Exposure of pressure vessels to fire can result in catastrophic explosion and escalation of accidents. The safe transportation of cargo in pressure vessels therefore requires knowledge of what will happen to the cargo in the event of a vehicle derailment or rollover resulting in fire exposure. The chapter presents an overview of selected testing and modelling work undertaken to understand the thermohydraulic processes within a vessel that drive pressurization during fire. A series of experiments highlighting the importance of adequate design and selection of protection systems are summarized. It is concluded that pressure relief alone is typically insufficient to prevent vessel rupture, but the combination of relief and thermal coatings can be effective. KW - BLEVE KW - Explosion KW - LPG KW - PIV KW - Pressure vessel KW - Thermohydraulics PY - 2020 SN - 978-981-15-6847-3 SN - 978-981-15-6848-0 DO - https://doi.org/https://doi.org/10.1007/978-981-15-6848-0_13 SP - 158 EP - 172 PB - Springer Nature CY - Singapore AN - OPUS4-51138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank ED - Zobory, I. T1 - Conceptual design of an active centre plate N2 - The efficiency and safety of railway transportation depend both on numerous factors linked to the vehicle, the infrastructure, the operator and the environment. Curved tracks are subjected to demanding situations due to elevated stress levels, as a function of the operating conditions and vehicle/infrastructure design. In such segments, steering forces are superimposed to lateral load transfers. The steering forces depend on the condition and the design of the centre plate and bogies’ suspensions design. While the friction at the centre plate provides the needed damping to mitigate the hunting vibration of the bogie in straight track segments, such yaw resistance originates high steering forces and rail damage on curved tracks. A centre plate with low friction at turns and high friction at straight track segments would thus be highly advantageous. In this paper, a centre plate design is proposed which provides a yaw-rotation resistance torque that depends on the bogie-car relative position. Two different designs are considered for that purpose, one that combines a spring-acted centring mechanism with a lower pair kinematics, while the other one involves higher kinematic pairs which should incorporate lateral damping elements. As a result of using an engineering design approach, the higher kinematic pairs-based design is recommended however, the validation of such operational principles, including the introduction of the needed damping, should be configured on the basis of experimental models. T2 - 11th International Conference on Railway Bogies and Running Gears CY - Budapest, Hungary DA - 09.09.2019 KW - Steering torques KW - Railway transportation KW - Bogie design KW - Conceptual design KW - Engineering design KW - Transport externalities PY - 2020 SN - 978-963-9058-42-2 SP - 77 EP - 86 PB - Scientific Society of Mechanical Engineers (SSME/GTE) CY - Budapest AN - OPUS4-54086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Lozano Guzmán, A. A. T1 - Experimental methods for road tankers. A critical review N2 - The transportation of liquids involves several situations derived from the curved shape of the cargo containers, including a comparatively high center of gravity, which negatively shifts when the container is partially loaded, and the vehicle is subjected to steering or braking accelerations. Aiming at reducing these effects several experimental approaches have been applied, involving different tank shapes and the use of baffles, tested under laboratory or field conditions, at full scale or at a down-scale. However, the scope of such approaches has been limited, mainly because the potential effect of other components of the vehicle on the road tanker behavior, has been neglected. In this paper, a critical review is presented of the experimental approaches considered so far, identifying specific experimental needs to improve the performance of the vehicles, from both the road safety and the environmental perspective. T2 - IMECE 2020 CY - Online meeting DA - 16.11.2020 KW - Tank KW - Road KW - Methods PY - 2020 SP - 1 EP - 8 AN - OPUS4-51641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero Navarrete, J. A. A1 - Otremba, Frank A1 - Lozano Guzmán, A. A. T1 - Liquid cargo effect on load transfer under orthogonal accelerations N2 - A methodology is proposed for the experimental analysis of the liquid cargo effect under combined orthogonal accelerations. To simultaneously subject the vehicle-cargo system to longitudinal and lateral accelerations, the vehicle is set obliquely on a tilt table. The experimental outputs suggest that there is a significant effect of the liquid cargo on the lateral load transfer ratio (LTR), on the order of 20%, which is attributable to the resulting shifting of the liquid cargo’s centre of gravity. That is, the peak LTR values due exclusively to sloshing were not significant, in such a way that the liquid cargo would only pose a safety risk under a steady acceleration input. Also, the inverse of the product of the magnitude of the acceleration times the free surface length, correlates with the liquid cargo effect. That is, the magnitude of the input acceleration is not fully determinant for greater load transfers. KW - Sloshing KW - Liquid cargo KW - Cargo shifting KW - Lateral load transfer KW - Braking in a turn manoeuvre KW - Experimental methods KW - Transport safety PY - 2022 DO - https://doi.org/10.1504/ijhvs.2022.127011 SN - 1744-232X VL - 29 IS - 3 SP - 213 EP - 226 PB - Inderscience Enterprises CY - Geneva AN - OPUS4-56016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jauregui-Correa, J. C. A1 - Otremba, Frank A1 - Hurtado-Hurtado, G. A1 - Romero-Navarrete, J. A. T1 - Experimental test rig for simulating dynamic loads on subway systems N2 - Scaled-down experimental facility: Can reproduce actual failures; can produce simulated data for identifying cracks in the substructure or other defects. The acceleration data can be converted into an equivalent deformation. The experimental facility can analyse dynamic loads. Equivalent force data: Facilitates the application to a health monitoring system; simplifies the development of predictive maintenance. These data is helpful in validating analytical or simulation models. T2 - Fifth International Conference on Railway Technology CY - Montpellier, France DA - 22.08.2022 KW - Test rig KW - Dynamic loads KW - Subway system PY - 2020 SP - 1 EP - 6 AN - OPUS4-55566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jauregui-Correa, J. C. A1 - Otremba, Frank A1 - Hurtado-Hurtado, G. A1 - Romero-Navarrete, J. A. T1 - Experimental test rig for simulating dynamic loads on subway systems N2 - Degradation in substructures, Mexico’s City Subway. Improve predictions using vibration Measurements. Ability to test operating conditions at Laboratory. Improve previous laboratory rig. Control operating conditions. Produce enough data for evaluating actual conditions. T2 - Fifth International Conference on Railway Technology CY - Montpellier, France DA - 22.08.2022 KW - Test rig KW - Simulating KW - Dynamic loads KW - Subway PY - 2022 AN - OPUS4-55568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero Navarrete, J. A. T1 - Assesing rail damage in turns due to lateral load transfer N2 - A testing procedure is proposed and used, to estimate the rail damage potentials of variations in both, the height of the cargo´s center of gravity and the railway car suspension´s spring constant. The experimental setup consist ed of a tilt table that slowl y exer ted an increasing lateral acceleration on a two axle bog ie type vehicle equipped with a spring supported container. The potential damaging effect derived from the resulting lateral load transfer, was assessed on the basis of the fourth power law. Results suggest that the cargo having a higher center of gravity could be more damagi ng to the outside rail when compared with the effect of the shorter center of gravity of the cargo, in a range from 0.94% to 3.17%, as a function of the spring constant of the suspension. Consequently and comparatively there would be a long term damaging effect on the rail when having a cargo with a high er center of gravity, so that specific cargo, having a high center of would be more aggressive to the infrastructure On the other hand for the range of time rate changes of the lateral acceleration, it was not found a consisten t trend regarding the effect of the value of the spring constant on the magnitude of the load transfers . T2 - IMECE 2024 CY - Portland, Oregon, USA DA - 17.11.2024 KW - Railway damage KW - Load transfer KW - Fourth power law KW - Experimental methods KW - Center of gravity KW - Tilt table KW - Suspension spring constant PY - 2024 SN - 978-0-7918-8869-8 SP - 1 EP - 4 PB - ASME AN - OPUS4-61785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Camplese, Davide A1 - Cozzolino, Chiara A1 - Scarponi, Giordano Emrys A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, Valerio T1 - Safety Assessment of MLI Super-Insulation Systems for Cryogenic Liquid-Hydrogen Tanks in Fire Scenarios N2 - In the context of green energy transition, cryogenic tanks insulated by MLI and vacuum are emerging as a leading solution to store hydrogen in heavy-duty vehicles. However, the integrity of such tanks can be jeopardized by fire. In such a scenario, MLI materials degradation can occur, leaving the tank unprotected from the fire heat flux, with consequent rapid pressurization and a high risk of failure. This study presents a safety assessment of non-combustible MLI under fire exposure based on the estimation of the time to mechanical failure of the equipment. This is calculated through an innovative model that simulates the thermomechanical response of the tank, including the MLI thermal degradation and the pressure-relief valve (PRV) operation. The application to several case studies that consider a typical LH2 tank featuring a wide range of MLI configurations demonstrated the likelihood of failure in case of exposure to a hydrocarbon pool fire, providing also comprehensive insights into the impact of the insulation characteristics and operating conditions on the time to failure. T2 - Loss Prevention 2025 CY - Bologna, Italien DA - 09.06.2025 KW - LH2 KW - LNG KW - Fire KW - Insulation KW - Safety KW - Tank PY - 2025 DO - https://doi.org/10.3303/CET25116036 SN - 2283-9216 IS - 116 SP - 211 EP - 216 PB - AIDIC AN - OPUS4-63739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Davide, Camplese A1 - Giordano, Emrys Scarponi A1 - Valerio, Cozzani A1 - Frank, Otremba T1 - Experimental investigation on the behavior of thermal super insulation materials for cryogenic storage tanks in fire incidents N2 - The number of vehicles using or transporting cryogenic fuels such as Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) increases fast in the land transportation sector. Does this also entail new risks? The storage of cryogenic fuels requires tanks with Thermal Super Insulations (TSI) to keep the fluid cold and limit the formation of boil-off gas. TSI has proven itself in some applications since the middle of the 20th century, but in the land transport sector they are still quite new, where accidents involving fires, collisions, and their combination are to be expected. This work focuses on investigating the behavior of different types of TSI while exposed to a heat source representing a fire. To this aim, a High-Temperature Thermal Vacuum Chamber (HTTVC) was applied, which allows the thermal loading of a thermal insulation material in a vacuum and measuring the heat flow transported through the TSI in parallel. In this study, the results of 6 samples are presented regarding 3 types of MLI, rock wool, perlites, and microspheres. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as to a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for reducing the risks to people and infrastructures in the progressive establishment of tanks for cryogenic fluids in our industry and society. The data presented in the study can be used to improve the design of tanks and TSIs, the assessment of accident scenarios, and the development of measures for first responders. KW - Liquefied hydrogen KW - Liquefied natural gas KW - Tanks KW - Fire KW - Insulation KW - MLI KW - Perlite KW - Rock wool KW - Microspheres PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599947 DO - https://doi.org/10.1016/j.psep.2024.04.131 SN - 0957-5820 VL - 187 SP - 240 EP - 248 PB - Elsevier AN - OPUS4-59994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, D. A1 - Scarponi, G. E. A1 - Cozzani, V. A1 - Otremba, Frank T1 - Insulation Materials Used in Tanks for the Storage of Cryogenic Fluids in Fire Scenarios N2 - The importance of tanks for storing cryogenic fluids in the energy industry is increasing because of ongoing political conflicts and the implementation of more environmentally friendly energy sources. Key representatives for the application of cryogenic tanks are natural gas in the form of Liquefied Natural Gas (LNG) and hydrogen, e. g. in the form of Liquefied Hydrogen (LH2), for which significantly higher transport capacities can be achieved with the same transport volume using cryogenic storages than with storages based solely on overpressure. What applies to all cryogenic transported fluids in common is their condition that must be maintained. Hence heat flows into the preserved fluid must be minimized. Thermal super Insulations (TSI) based on e. g. multilayer insulations (MLI), perlites, and vacuum are utilized for this purpose and have already proven themselves in similar applications. However, for the use of tanks for cryogenic fluids in the transport sector, there is insufficient knowledge regarding the course and consequences of incidents, which is due to the still short period of use and the few documented incidents, hence few investigations carried out in this field. Typical scenarios in the transport sector represent car accidents with collisions, fires, and their combination, which are associated with extraordinary loads on the tank. The focus of this study is to investigate the behavior of TSI as a result of their thermal exposure to a heat source representing a fire. It is worth mentioning that this could lead to an increase of the heat flux into a tank by several orders of magnitude, and to permanent damage of the TSI, ultimately rapid release of flammable gas as well as a Boiling Liquide Expanding Vapour Explosion (BLEVE). For this purpose, a high temperature thermal vacuum chamber (HTTVC) has been developed that allows thermal loading of MLI or perlites in a vacuum and simultaneous measurement of heat flow through this TSI. The HTTVC is designed to represent realistic insulation conditions and to withstand thermal loads from typical design fires. The HTTVC was applied to investigate TSI based on MLI and vacuum. It is shown that the thermal stress caused permanent damage to the TSI, with shrinkage, phase change, pyrolysis, and condensation being significant damage mechanisms. The results are relevant for the evaluation of accident scenarios and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - ASME 2023 Pressure Vessels & Piping Conference (PVP2023) CY - Atlanta, Georgia, USA DA - 16.07.2023 KW - LH2 KW - LNG KW - Fire KW - MLI KW - Safety PY - 2023 AN - OPUS4-57974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Heßmann, Jennifer A1 - Werner, Jan A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank T1 - Investigation of realistic fire scenarios involving cryogenic storage tanks N2 - The number of vehicles using or transporting cryogenic fuels such as Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) increases fast in the land transportation sector. Does this also entail new risks for instance from a BLEVE? A key to answer this question is to research representative fires by its characterization and its effect on the insulation. At BAM’s technical test side in Germany, a test series was started to answer this question among others. This paper presents results on a pool fire under a colorimeter, that simulates a tank. The investigation points out, that the full fire characterization approach allows to represent the fire. The findings are relevant for the investigation of a representative design fire that is applicable for the approval and improvement of tanks as well as to research accident scenarios and their consequences. T2 - 18th EFCE International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Bologna, Italy DA - 08.06.2025 KW - LH2 KW - Insulation KW - Fire KW - Liquefied Natural Gas KW - Safety PY - 2025 AN - OPUS4-63425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank T1 - Systems with Cryogenic Liquefied Gases in Fire Incidents N2 - Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) establish themselves as important energy carriers in the transport sector. Its storage requires tanks with Thermal Super Insulations (TSI) to keep the transported fluid cold. TSI has proven itself in various applications over a long time, but not in the land transport sector, where accidents involving collisions, fires, and their combination are to be expected. The focus of this study is to investigate the behavior of different types of TSI when exposed to a heat source that represents a fire. Therefore, a High- Temperature Thermal Vacuum Chamber (HTTVC) was used that allows the thermal loading of thermal insulation material in a vacuum and measuring the heat flow through the TSI in parallel. Within this study, 5 samples were tested regarding 3 different types of MLI, rock wool, and perlites. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for the evaluation of accident scenarios, the improvement of TSI, and the development of emergency measures. T2 - IMECE 2023 CY - New Orleans, Louisiana, USA DA - 29.10.2023 KW - LH2 KW - LNG KW - Fire PY - 2023 AN - OPUS4-58769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hajhariri, Aliasghar A1 - Eberwein, Robert A1 - Perrone, Luca Pakj A1 - Cozzani, Valerio A1 - Otremba, Frank A1 - Seidlitz, Holger T1 - Study the impact of spacer at thermal degradation process of MLI-based insulation in fire condition N2 - To reduce CO2 emissions, energy carriers such as hydrogen are considered to be a solution. Consumption of hydrogen as a fuel meets several limitations such as its low volumetric energy density in gas phase. To tackle this problem, storage as well as transportation in liquified phase is recommended. To be able to handle this component in liquid phase, an efficient thermal insulation e.g., MLI insulation is required. Different studies have been addressed the vulnerability of such insulation against high thermal loads e.g., in an accident engaging fire. Some of research works have highlighted the importance of considering the MLI thermal degradation focusing on its reflective layer. However, limited number of studies addressed the thermal degradation of spacer material and its effect on the overall heat flux. In this study, through systematic experimental measurements, the effect of thermal loads on glass fleece, glass paper as well as polyester spacers are investigated. The results are reported in various temperature and heat flux profiles. Interpreting the temperature profiles revealed that, as the number of spacers in the medium increases, the peak temperature detectable by the temperature sensor on the measurement plate decreases. Each individual spacer contributes to mitigating the radiative energy received by the measurement plate. Stacks of 20–50 spacers (this is the number of layers in commercial MLI systems applied for liquid hydrogen applications) can potentially reduce the thermal radiation by 1–2 orders of magnitude. An empirical correlation to predict a heat flux attenuation factor is proposed, which is useful for further numerical and analytical studies in the temperature range from ambient to 300 ◦C. KW - Cryogenic KW - Liquid Hydrogen KW - Multi-Layer Insultation KW - Heat Transfer KW - Hydrogen Storage Safety PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-614919 DO - https://doi.org/10.1016/j.jlp.2024.105461 SN - 0950-4230 VL - 92 SP - 1 EP - 7 PB - Elsevier Ltd. AN - OPUS4-61491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -