TY - JOUR A1 - Hurtado-Hurtado, G. A1 - Morales-Velazquez, L. A1 - Otremba, Frank A1 - Jáuregui-Correa, J. C. T1 - Railcar Dynamic Response during Braking Maneuvers Based on Frequency Analysis N2 - The dynamic response of a vehicle during braking is influenced by the tangential forces developed at the wheel-rail’s contact surface. The friction coefficient affects the load transfer from the wheel’s tread to the vehicle. In this work, the vibrations of a scale-down railway vehicle are monitored during braking and their relationship with the friction coefficient between wheel and rail is found out. The vehicle is instrumented with encoders, accelerometers, and is controlled via Bluetooth. The tests are carried out with clean and friction-modified rails. The tangential forces transmitted from the wheel to the railcar’s body are visualized in time and frequency using a proposed correlation algorithm based on the outputs of the ContinuousWavelet Transform (CWT). The results demonstrate that tangential forces have a significant impact on railway vehicles under conditions of high friction coefficients and large creep values. KW - Railway vibration measurements KW - Vibration signal analysis KW - Wheel-rail tangential forces KW - Railway braking forces KW - Wheel-rail friction coefficient PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572309 DO - https://doi.org/10.3390/app13074132 VL - 13 IS - 7 SP - 1 EP - 15 PB - MDPI AN - OPUS4-57230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank T1 - A comparative study on insulation materials in tanks for the storage of cryogenic fluids in fire incidents N2 - Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) establish themselves as important energy carriers in the transport sector. Its storage requires tanks with Thermal Super Insulations (TSI) to keep the transported fluid cold. TSI has proven itself in various applications over a long time, but not in the land transport sector, where accidents involving collisions, fires, and their combination are to be expected. The focus of this study is to investigate the behavior of different types of TSI when exposed to a heat source that represents a fire. Therefore, a High-Temperature Thermal Vacuum Chamber (HTTVC) was used that allows the thermal loading of thermal insulation material in a vacuum and measuring the heat flow through the TSI in parallel. Within this study, 5 samples were tested regarding 3 different types of MLI, rock wool, and perlites. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for the evaluation of accident scenarios, the improvement of TSI, and the development of emergency measures. T2 - IMECE 2023 CY - New Orleans, Louisiana, USA DA - 29.10.2023 KW - LH2 KW - LNG KW - Fire PY - 2023 SP - 1 EP - 7 AN - OPUS4-58768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, D. A1 - Scarponi, G. E. A1 - Cozzani, V. A1 - Otremba, Frank T1 - Insulation Materials Used in Tanks for the Storage of Cryogenic Fluids in Fire Scenarios N2 - The importance of tanks for storing cryogenic fluids in the energy industry is increasing because of ongoing political conflicts and the implementation of more environmentally friendly energy sources. Key representatives for the application of cryogenic tanks are natural gas in the form of Liquefied Natural Gas (LNG) and hydrogen, e. g. in the form of Liquefied Hydrogen (LH2), for which significantly higher transport capacities can be achieved with the same transport volume using cryogenic storages than with storages based solely on overpressure. What applies to all cryogenic transported fluids in common is their condition that must be maintained. Hence heat flows into the preserved fluid must be minimized. Thermal super Insulations (TSI) based on e. g. multilayer insulations (MLI), perlites, and vacuum are utilized for this purpose and have already proven themselves in similar applications. However, for the use of tanks for cryogenic fluids in the transport sector, there is insufficient knowledge regarding the course and consequences of incidents, which is due to the still short period of use and the few documented incidents, hence few investigations carried out in this field. Typical scenarios in the transport sector represent car accidents with collisions, fires, and their combination, which are associated with extraordinary loads on the tank. The focus of this study is to investigate the behavior of TSI as a result of their thermal exposure to a heat source representing a fire. It is worth mentioning that this could lead to an increase of the heat flux into a tank by several orders of magnitude, and to permanent damage of the TSI, ultimately rapid release of flammable gas as well as a Boiling Liquide Expanding Vapour Explosion (BLEVE). For this purpose, a high temperature thermal vacuum chamber (HTTVC) has been developed that allows thermal loading of MLI or perlites in a vacuum and simultaneous measurement of heat flow through this TSI. The HTTVC is designed to represent realistic insulation conditions and to withstand thermal loads from typical design fires. The HTTVC was applied to investigate TSI based on MLI and vacuum. It is shown that the thermal stress caused permanent damage to the TSI, with shrinkage, phase change, pyrolysis, and condensation being significant damage mechanisms. The results are relevant for the evaluation of accident scenarios and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - ASME 2023 Pressure Vessels & Piping Conference (PVP2023) CY - Atlanta, Georgia, USA DA - 16.07.2023 KW - LH2 KW - LNG KW - MLI KW - Fire PY - 2023 SP - 1 EP - 8 PB - ASME AN - OPUS4-57973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Davide, Camplese A1 - Giordano, Emrys Scarponi A1 - Valerio, Cozzani A1 - Frank, Otremba T1 - Experimental investigation on the behavior of thermal super insulation materials for cryogenic storage tanks in fire incidents N2 - The number of vehicles using or transporting cryogenic fuels such as Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) increases fast in the land transportation sector. Does this also entail new risks? The storage of cryogenic fuels requires tanks with Thermal Super Insulations (TSI) to keep the fluid cold and limit the formation of boil-off gas. TSI has proven itself in some applications since the middle of the 20th century, but in the land transport sector they are still quite new, where accidents involving fires, collisions, and their combination are to be expected. This work focuses on investigating the behavior of different types of TSI while exposed to a heat source representing a fire. To this aim, a High-Temperature Thermal Vacuum Chamber (HTTVC) was applied, which allows the thermal loading of a thermal insulation material in a vacuum and measuring the heat flow transported through the TSI in parallel. In this study, the results of 6 samples are presented regarding 3 types of MLI, rock wool, perlites, and microspheres. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as to a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for reducing the risks to people and infrastructures in the progressive establishment of tanks for cryogenic fluids in our industry and society. The data presented in the study can be used to improve the design of tanks and TSIs, the assessment of accident scenarios, and the development of measures for first responders. KW - Liquefied hydrogen KW - Liquefied natural gas KW - Tanks KW - Fire KW - Insulation KW - MLI KW - Perlite KW - Rock wool KW - Microspheres PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599947 DO - https://doi.org/10.1016/j.psep.2024.04.131 SN - 0957-5820 VL - 187 SP - 240 EP - 248 PB - Elsevier AN - OPUS4-59994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank ED - Di Benedetto, Almerinda T1 - Experimental Research Of A Tank For A Cryogenic Fluid With A Wall Rupture In A Fire Scenario N2 - In the course of decarbonizing the energy industry, cryogenic energy carriers as liquefied hydrogen (LH2) and liquefied natural gas (LNG) are seen as having great potential. In technical applications, the challenge is to keep these energy carriers cold for a long time. This is achieved in the road transport sector and also stationary applications by thermal super insulations (TSI) which based on double-walled tanks with vacuum and multilayer insulation (MLI) in the interspace. This study focuses on the behaviour of widely used combustible MLI in a fire scenario, at vacuum and atmospheric pressure conditions. The former corresponds to the typical design condition and the latter to the condition after an outer hull rapture of a tank. Furthermore, two fire scenarios were taken into account: a standard-oriented approach and a hydrocarbon fire-oriented approach. For the study, a test rig was applied that allows testing of TSI at industrial conditions and subsequent analysis of TSI samples. The test rig allows thermal loading and performance analysis of TSI samples at the same time. Comparing the tests, the samples degraded differently. However, no sudden failure of the entire MLI was observed in any test. These results are relevant for the evaluation of incidents with tanks for the storage of cryogenic fluids and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - 15th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Neapel, Italy DA - 10.06.2024 KW - Liquefied hydrogen KW - Liquefied natural gas KW - Cryogenic storage tank KW - Fire KW - Thermal insulation KW - Multi-Layer Insulation PY - 2024 SP - 707 EP - 717 AN - OPUS4-60460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -