TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - A simplified model to simulate the pitch instability of a partially filled tank trailer N2 - Singular situation of pitch instability, modeled through simplified models. More analysis is required to proposed vehicle design improvements. T2 - IMECE 2017 CY - Tampa, FL, USA DA - 03.11.2017 KW - Pitch instability KW - Tank trailer KW - Simulation PY - 2017 AN - OPUS4-42851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - Modelling a partly filled road tanker during an emergency braking N2 - Figure 10 illustrates the theoretical results from the simplified model considered, together with the experimental data. These results and measurements are presented one next to the other, in order to facilitate the validity analysis of the proposed simulation methodology. These results illustrate that the trends are comparable for both sets of data, that is, a similar range is obtained for all of the variables reported. A lower pressure is generated in chamber 5, which is attributed to the shorter length of this chamber. However, such increase in pressure does not correspond exactly to the difference of lengths, as the ratio of lengths would cause a differential pressure of 2.3/1.23 = 1.86, while the ratio of average pressures is on the order of 2. That is, there is an incremental, which is associated to the maximum height attained by the fluid in the chamber. The major difference between both sets of data, the experimental and theoretical, is that the theoretical do not include much of the noise and random oscillations reported in the experimental data. Such noise, however, is of very low amplitude, in comparison with the maximum values attained. The practical applications of these results could be in the area of chamber design, so that the effects of the length of the chambers be taken into account. That is, such greater lengths for the fluid in the chamber would involve larger pressures and consequently, greater stresses. However, the analysis should include an overall perspective, that is, the shortening of the chambers would imply an increase in the number of chambers, for a certain total payload, and the superposition effect of pressures, should be considered. On the other hand, the analysis could be extended to characterize the effects of the distribution of the lengths of the different chambers along the axis of the tanker, as the different resulting forces could have different effects on the pitch response of the road tanker. T2 - WCECS 2017 CY - San Francisco, CA, USA DA - 25.10.2017 KW - Tanker KW - Emergency KW - Braking PY - 2017 AN - OPUS4-42854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Lozano Guzmán, A. A. T1 - Energy saving potentials of railways instead of roadways: Mexico case N2 - For the last 100 years, Mexico has not invested in new freight railway infrastructure. Consequently, the values of indicators about the use of such Transport mode are poorly compared with those of developed countries such as Germany. T2 - Railways 2018 CY - Sitges, Barcelona, Spain DA - 03.09.2018 KW - Energy saving KW - Potentials KW - Railways KW - Roadways PY - 2018 UR - http://www.railwaysconference.com/ SP - Paper E5.05, 1 EP - 4 PB - Civil-Comp Limited CY - Dun Eaglais, UK AN - OPUS4-45909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. A1 - Lozano Guzmán, A. A. T1 - Cargo securement standards and braking maneuvers N2 - There was a need to validate the longitudinal performance required for the cargo securement, as current standards exhibit differences. A model has been proposed in this paper, to simulate the effect of a shifting cargo on the braking efficiency of the vehicle. Results suggest that the braking efficiency can be greater in the case of a shifting cargo, as a result of the uncoupling of the cargo-vehicle systems, implying that similar braking forces are exerted on a reduced mass. The shifting of the cargo can occur as a result of the vibration of the vehicle, that leads to having a diminished friction force to prevent the shifting of the cargo. T2 - 20th Internatinal Conference on Road Traffic Saefy an Public Transport Vehicles CY - Paris, France DA - 29.10.2018 KW - Cargo KW - Securement KW - Braking KW - Maneuvers PY - 2018 AN - OPUS4-46501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fraňa, K. A1 - Attia, S. H. A1 - Otremba, Frank T1 - A numerical simulation of the filling process in the pressure bottle N2 - A filling process of the pressure bottle used for the air storage was investigated by numerical simulations. During the filling process, the temperature was rising up to maximal value and after that started to decline. The good match was found between experimental and numerical results. In order to reproduce the experimental conditions, the process of the filling bottle was controlled by the pressure which varied in time. This filling strategy influenced furthermore the mass flow rate and the air flow velocity. Because of the geometrical symmetry, the simulation was calculated as an axisymmetric problem. KW - Filling procedere KW - Receptacle PY - 2018 UR - http://www.ijmerr.com/index.php?m=content&c=index&a=show&catid=162&id=997 DO - https://doi.org/10.18178/ijmerr.7.5.558-563 SN - 2278-0149 VL - 7 IS - 5 SP - 558 EP - 563 PB - IJMERR CY - Rowland Heights, CA, USA AN - OPUS4-46021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Bradley, I. A1 - Romero-Navarrete, José A. T1 - Boiling Thermohydraulics within Pressurized Vessels N2 - Transport safety depends in great extent of what happens to the cargo once the carrying vehicle derails or rollovers. The exposure of tanks to direct fire is a condition that potentially involves catastrophic consequences. Studying the behavior of the contained fluid under these drastic circumstances, is critical to develop methods and techniques to mitigate the serious consequences of many mishaps. In this paper, the experimental potentials of a Particle Image Velocimetry data acquisition system are described, for providing experimental data that could be used to calibrate mathematical models. As an example of the situations that need to be modelled, an experiment is described concerning the effect of the boundary conditions and protecting devices, on the rate of variation of pressure and temperature of the fluid in a tank exposed to a direct fire. In this regard, the results emphasize the importance of equipping the vessels with both thermal insulation and safety valves. T2 - WCECS 2018 CY - San Francisco, CA, USA DA - 23.10.2018 KW - Thermohydraulic KW - Vessels PY - 2018 SN - 978-988-14049-0-9 SN - 2078-0958 SN - 2078-0966 SP - 538 EP - 542 AN - OPUS4-46419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - Boiling Thermohydraulics within Pressurized Vessels N2 - Small and large-scale tests have been carried out Pressure vessel – to improve numerical modelling Different types of fire must be distinguished Modelling of vessels were discussed Test configuration has been developed to see what happens in the vessel First results encourage us to continue the Research Thermohydraulics needs further work (boundary layers). T2 - WCECS 2018 CY - San Francisco, CA, USA DA - 23.10.2018 KW - Boiling KW - Thermohydraulic KW - Vessels PY - 2018 AN - OPUS4-46420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. A1 - Lozano Guzmán, A. A. T1 - Cargo securement standards and braking maneuvers N2 - There was a need to validate the longitudinal performance required for the cargo securement, as current standards exhibit differences. A model has been proposed in this paper, to simulate the effect of a shifting cargo on the braking efficiency of the vehicle. Results suggest that the braking efficiency can be greater in the case of a shifting cargo, as a result of the uncoupling of the cargo-vehicle systems, implying that similar braking forces are exerted on a reduced mass. The shifting of the cargo can occur as a result of the vibration of the vehicle, that leads to having a diminished friction force to prevent the shifting of the cargo. T2 - International Research Conference CY - Paris, France DA - 29.10.2018 KW - Cargo KW - Securement KW - Maneuvers PY - 2018 SP - 2105 EP - 2108 AN - OPUS4-46423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bradley, I. A1 - Scarponi, G. E. A1 - Otremba, Frank A1 - Cozzani, V. A1 - Birk, A. M. T1 - Experimental Analysis of a Pressurized Vessel Exposed to Fires: an Innovative Representative Scale Apparatus N2 - A novel deign of test equipment has been commissioned to investigate thermal stratification and boiling during fire exposure of pressure vessels. Extensive temperature measurements and video of the internal conditions during fire exposure are possible, and the equipment has been designed for future compatibility with laser-based velocity measurement techniques. It is expected to generate data large quantities of data that will be of use in validation of two- and three-dimensional CFD models for the prediction of pressure vessel behaviour in fire. Future work will seek to characterize the boundary layer conditions in detail for a range of test fluids, fill levels and fire-induced thermal boundary conditions. Initial tests undertaken during commissioning may indicate that fire exposure of the vessel wall just above the liquid level can have a notable influence on the pressurization rate, by increasing the degree of superheat. Further experimental and modelling work is required to confirm and quantify this effect, or to rebut this conclusion. T2 - ICH 13th International Conference on Chemical and Process Engineering CY - Milan, Italy DA - 28.05.2017 KW - Representative Scale Apparatus KW - Pressurized Vessel, KW - Fire PY - 2017 VL - 57 SP - 1 EP - 6 AN - OPUS4-40663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bradley, I. A1 - Scarponi, G. E. A1 - Otremba, Frank A1 - Cozzani, V. A1 - Birk, A. M. T1 - Experimental analysis of a pressurized N2 - Test equipment has been commissioned and proven to work.Initial data on temperatures, and pressurization rates have been collected and are now under analysis. The level of detail of the measurements is suitable for CFD validation. Initial PIV studies were undertaken to measure the velocity field. T2 - ICH 13th International Conference on Chemical and Process Engineering CY - Milan, Italy DA - 28.05.2017 KW - Fire KW - pressurized vessel KW - Representative scale apparatus PY - 2017 AN - OPUS4-40665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - A massive vehicle-flexible pavement dynamic interaction simulator N2 - The interaction of the vehicles with the pavements imply damaging effects on both systems, as a function of the operating conditions and design characteristics of both systems. These effects influence the road pricing as well as the maintenance costs of the vehicles. In this paper, a simulation scheme has been proposed to analyze such interaction in massive way, involving a multivehicle models was the uncoupling of the roll and pitch responses. Results suggest that the damaging effects on the pavement and the vehicle, depends on the position along the road profile. However, the vertical design of the road would mainly affect the pavement damage, while the turning maneuvers would strongly influence the damage of the vehicle. Many uses can be identified for the proposed simulation scheme, involving different design and operating conditions for both systems. T2 - NAFEMS World Congress 2017 CY - Stockholm, Sweden DA - 11.06.2017 KW - Vehicle KW - Interaction simulator PY - 2017 SP - 1 EP - 11 AN - OPUS4-40667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - Modelling of the lateral stability of river tankers N2 - A model of the cargo – ship interaction has been presented, for a navigation environment in which there is no waves, in which the ship lateral stability depends only on the manoeuver performed and the characteristics of the ship and cargo. Several simplifications have been introduced in the model, including the circular bottom of the ship, which facilitates the location of the buoyancy force on the ship, and the analogy of the sloshing cargo motion to a simple pendulum. Two forms of damping were introduced (river waters with the ship´s hull and the friction of the liquid inside the tanker walls), while the sliding motion of the ship when turning has been assumed as negligible. The results suggest that the sloshing cargo influences the lateral stability of the river tanker, with increases in the maximum roll angle from 15% to 40%, as a function of the speed and the fill level. The maximum roll angle has been found to occur at a 75% fill level, regardless of the ship speed. T2 - NAFEMS World Congress 2017 CY - Stockholm, Sweden DA - 11.06.2017 KW - Lateral stability KW - River tankers PY - 2017 SP - 1 EP - 11 AN - OPUS4-40669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Otremba, Frank A1 - Romero, Jose A. ED - Sio-Iong Ao, T1 - Modeling of vehicle-cargo interaction under different environments N2 - The safety of any transport system depends on a multitude of conditions, parameters and circumstances. In this regard, the interaction of the carried Cargo with the carrying vehicle represents a factor influencing the overall safety of any transport. The effects of cargo on the vehicle have to do with the vibration or shifting of the cargo, affecting the lateral stability of the vehicles and the braking performance. Such interaction has been associated to road crashes and maritime vehicles capsizing. Simulation of cargo-vehicle interaction thus represents an interesting Topic when a reduction in transport accidents is pursued. In this paper, the fundamentals principles for simulating the interaction of the liquid cargo and the carrying vehicle, is presented. In the case of a road transportation, the proposed simplified Simulation methodologies, show good agreement with a full-scale test. KW - Transition matrix approach KW - Braking performance KW - Experimental approach KW - Newton approach Ship stability KW - Sloshing PY - 2018 SN - 978-981-13-2191-7 SP - 47 EP - 57 PB - Springer Nature CY - Singapore AN - OPUS4-46773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - Experimental modeling of railway car wheel-forces during turning N2 - An experimental testing rig has been proposed to study the dynamic interaction between a liquid cargo and the carrying vehicle during turning maneuvers. The basic operational principle of the testing rig consists in simulating the lateral accelerations associated to turning maneuvers through the use of a tilt table. While the experimental capabilities of the testing rig include the analysis of the effects of the cars on the whole transport infrastructure, including sleepers and ballast, a first use of the rig considered the effect of sloshing cargo on the level of dynamic forces transmitted to the rails. Such test was used to validate a simplified theoretical approach consisting of a two degree-of-freedom double pendulum mechanical system, where a simple pendulum, representing the sloshing cargo, is articulated to the spring-supported vehicle chassis, which is modelled as an inverted torsional pendulum. While the theoretical results exhibit a high correlation with the experimental data, the main discrepancy between both outputs, relates with the frequency of the residual vibration, once the lateral acceleration input is ceased. Such difference in frequency, would imply an underestimation of the number of loading cycles to which the infrastructure is subjected. On the other hand, the peak values are within acceptable difference levels. T2 - IEEE/ASME Joint Rail Conference CY - Snowbird, Utah, USA DA - 09.04.2019 KW - Railway KW - Wheel-forces KW - Turning PY - 2019 SP - 1 EP - 8 PB - ASME AN - OPUS4-47880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - An, Q. A1 - Bäßler, Ralph A1 - Hertwig, Andreas A1 - Rehfeldt, Rainer A1 - Hidde, Gundula T1 - Investigation of mechanical stress and B10 exposure on FKM polymer N2 - Biofuels, particularly biodiesel, have gained significant attention as an alternative to traditional fossil fuels in recent years. Unlike diesel, which contains hundreds of compounds, biodiesel only contains a few compounds in the C16-C18 carbon chain. However, the use of biodiesel in automobile and transportation applications can result in problems of degradation or even damage in materials. Among the commonly used polymer materials, fluorocarbon (FKM) shows excellent performance and high stability and compatibility towards oil, diesel, ethanol, and other chemicals. FKM is a family of fluorocarbon-based fluoroelastomer materials, which provide excellent high-temperature and chemical stability compared to other elastomers. As a result, FKM is widely used in chemical processes such as petroleum refining, where it is used for sealings, pumps, and other components. T2 - TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings CY - Orlando, Florida, USA DA - 03.03.2024 KW - B10 exposure KW - FKM polymer PY - 2024 AN - OPUS4-59636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Q. A1 - Bäßler, Ralph A1 - Hertwig, Andreas A1 - Rehfeldt, Rainer A1 - Hidde, Gundula A1 - Otremba, Frank T1 - Investigation of Mechanical Stress and B10 Exposure on FKM Polymer N2 - Mechanical stress often accelerates the failure of polymer materials. The aim of this research is to study the interaction between the sealing material FKM and biofuels B10 (heating oil with 10% biodiesel). The mechanical stress test was carried out in a special apparatus. Both mechanical and non-mechanical stress tests were conducted on specimens at 20, 40, and 70 °C for 28 days to document changes in mass, volume, and tensile properties. Both increasing temperature and mechanical stress have a significant effect on the tensile strength of the FKM polymer when exposed to B10. The combination of increasing temperature and mechanical stress induced rupture within 2 h. It was also established that FKM polymer with pre-exposure in B10 survived longer during mechanical stress compared to specimens exposed only to air. With the support of infrared (IR) spectroscopy, we were able to confirm the penetration of B10 into the FKM polymer. T2 - TMS 2024 Annual Meeting & Exhibition Teilnahme mit Präsentation CY - Orlando-Florida / USA DA - 03.03.2024 KW - Biofuels KW - Sealing materials KW - Mechanical stress KW - Change in tensile properties PY - 2024 DO - https://doi.org/10.1007/978-3-031-50349-8_108 SP - 1253 EP - 1261 PB - Springer CY - Orlando-Florida / USA AN - OPUS4-59638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, D. A1 - Scarponi, G. E. A1 - Cozzani, V. A1 - Otremba, Frank T1 - Insulation Materials Used in Tanks for the Storage of Cryogenic Fluids in Fire Scenarios N2 - The importance of tanks for storing cryogenic fluids in the energy industry is increasing because of ongoing political conflicts and the implementation of more environmentally friendly energy sources. Key representatives for the application of cryogenic tanks are natural gas in the form of Liquefied Natural Gas (LNG) and hydrogen, e. g. in the form of Liquefied Hydrogen (LH2), for which significantly higher transport capacities can be achieved with the same transport volume using cryogenic storages than with storages based solely on overpressure. What applies to all cryogenic transported fluids in common is their condition that must be maintained. Hence heat flows into the preserved fluid must be minimized. Thermal super Insulations (TSI) based on e. g. multilayer insulations (MLI), perlites, and vacuum are utilized for this purpose and have already proven themselves in similar applications. However, for the use of tanks for cryogenic fluids in the transport sector, there is insufficient knowledge regarding the course and consequences of incidents, which is due to the still short period of use and the few documented incidents, hence few investigations carried out in this field. Typical scenarios in the transport sector represent car accidents with collisions, fires, and their combination, which are associated with extraordinary loads on the tank. The focus of this study is to investigate the behavior of TSI as a result of their thermal exposure to a heat source representing a fire. It is worth mentioning that this could lead to an increase of the heat flux into a tank by several orders of magnitude, and to permanent damage of the TSI, ultimately rapid release of flammable gas as well as a Boiling Liquide Expanding Vapour Explosion (BLEVE). For this purpose, a high temperature thermal vacuum chamber (HTTVC) has been developed that allows thermal loading of MLI or perlites in a vacuum and simultaneous measurement of heat flow through this TSI. The HTTVC is designed to represent realistic insulation conditions and to withstand thermal loads from typical design fires. The HTTVC was applied to investigate TSI based on MLI and vacuum. It is shown that the thermal stress caused permanent damage to the TSI, with shrinkage, phase change, pyrolysis, and condensation being significant damage mechanisms. The results are relevant for the evaluation of accident scenarios and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - ASME 2023 Pressure Vessels & Piping Conference (PVP2023) CY - Atlanta, Georgia, USA DA - 16.07.2023 KW - LH2 KW - LNG KW - Fire KW - MLI KW - Safety PY - 2023 AN - OPUS4-57974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Chianese, Carmela A1 - Hajhariri, Aliasghar A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, Valerio T1 - Modeling the performance of multilayer insulation in cryogenic tanks undergoing external fire scenarios N2 - Multilayer Insulation (MLI) is frequently used in vacuum conditions for the thermal insulation of cryogenic storage tanks. The severe consequences of the degradation of such materials in engulfing fire scenarios were recently evidenced by several large-scale experimental tests. In the present study, an innovative modelling approach was developed to assess the performance of heat transfer in polyester-based MLI materials for cryogenic applications under fire conditions. A specific layer-by-layer approach was integrated with an apparent kinetic thermal degradation model based on thermogravimetric analysis results. The modeling results provided a realistic simulation of the experimental data obtained by High-Temperature Thermal Vacuum Chamber tests reproducing fire exposure conditions. The model was then applied to assess the behavior of MLI systems for liquid hydrogen tanks in realistic fire scenarios. The results show that in intense fire scenarios degradation occurs rapidly, compromising the thermal insulation performances of the system within a few minutes. KW - Multilayer Insulation KW - Cryogenic Vessels KW - Liquefied Hydrogen KW - Liquefied Natural Gas KW - Safety KW - Fire PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599418 DO - https://doi.org/10.1016/j.psep.2024.04.061 SN - 0957-5820 VL - 186 SP - 1169 EP - 1182 PB - Elsevier B.V. AN - OPUS4-59941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio T1 - Systems with Cryogenic Liquefied Gases in Fire Incidents N2 - Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) establish themselves as important energy carriers in the transport sector. Its storage requires tanks with Thermal Super Insulations (TSI) to keep the transported fluid cold. TSI has proven itself in various applications over a long time, but not in the land transport sector, where accidents involving collisions, fires, and their combination are to be expected. The focus of this study is to investigate the behavior of different types of TSI when exposed to a heat source that represents a fire. Therefore, a High- Temperature Thermal Vacuum Chamber (HTTVC) was used that allows the thermal loading of thermal insulation material in a vacuum and measuring the heat flow through the TSI in parallel. Within this study, 5 samples were tested regarding 3 different types of MLI, rock wool, and perlites. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for the evaluation of accident scenarios, the improvement of TSI, and the development of emergency measures. T2 - IMECE 2023 CY - New Orleans, Louisiana, USA DA - 29.10.2023 KW - LH2 KW - LNG KW - Fire PY - 2023 AN - OPUS4-58769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Camplese, D. A1 - Chianese, C. A1 - Scarponi, G. A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, V. T1 - Analysis of high temperature degradation of multi-layer insulation (MLI) systems for liquid hydrogen storage tanks N2 - The interest in hydrogen-based green energy is increasing worldwide, and the same is true for hydrogen-powered vehicles. Among the possible solutions to store hydrogen in such vehicles, cryogenic tanks equipped with multi-layer insulation (MLI) are the most promising to increase the amount of energy stored per unit volume. However, MLI is affected by severe deterioration when exposed to an external source of heat such as a fire following a car accident, leaving the tank unprotected and leading to failure in a relatively short time. In this work, a one-dimensional model to evaluate MLI thermal degradation when a liquid hydrogen tank is exposed to fire is presented. The relevance of taking MLI degradation into account when simulating the pressure increase due to external fire exposure is here demonstrated through the analysis of several case studies. The results show that MLI systems performance depletes within a few minutes of exposure to hydrocarbon poolfire. T2 - ICheaP 16 CY - Naples, Italy DA - 21.05.2023 KW - LH2 KW - MLI KW - Tiefkalt KW - Fire KW - Tank PY - 2023 SN - 2283-9216 VL - 2023 SP - 1 EP - 6 PB - AIDIC Servizi S.r.l. AN - OPUS4-57584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hurtado-Hurtado, G. A1 - Morales-Velazquez, L. A1 - Otremba, Frank A1 - Jáuregui-Correa, J. C. T1 - Railcar Dynamic Response during Braking Maneuvers Based on Frequency Analysis N2 - The dynamic response of a vehicle during braking is influenced by the tangential forces developed at the wheel-rail’s contact surface. The friction coefficient affects the load transfer from the wheel’s tread to the vehicle. In this work, the vibrations of a scale-down railway vehicle are monitored during braking and their relationship with the friction coefficient between wheel and rail is found out. The vehicle is instrumented with encoders, accelerometers, and is controlled via Bluetooth. The tests are carried out with clean and friction-modified rails. The tangential forces transmitted from the wheel to the railcar’s body are visualized in time and frequency using a proposed correlation algorithm based on the outputs of the ContinuousWavelet Transform (CWT). The results demonstrate that tangential forces have a significant impact on railway vehicles under conditions of high friction coefficients and large creep values. KW - Railway vibration measurements KW - Vibration signal analysis KW - Wheel-rail tangential forces KW - Railway braking forces KW - Wheel-rail friction coefficient PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572309 DO - https://doi.org/10.3390/app13074132 VL - 13 IS - 7 SP - 1 EP - 15 PB - MDPI AN - OPUS4-57230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank T1 - A comparative study on insulation materials in tanks for the storage of cryogenic fluids in fire incidents N2 - Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) establish themselves as important energy carriers in the transport sector. Its storage requires tanks with Thermal Super Insulations (TSI) to keep the transported fluid cold. TSI has proven itself in various applications over a long time, but not in the land transport sector, where accidents involving collisions, fires, and their combination are to be expected. The focus of this study is to investigate the behavior of different types of TSI when exposed to a heat source that represents a fire. Therefore, a High-Temperature Thermal Vacuum Chamber (HTTVC) was used that allows the thermal loading of thermal insulation material in a vacuum and measuring the heat flow through the TSI in parallel. Within this study, 5 samples were tested regarding 3 different types of MLI, rock wool, and perlites. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for the evaluation of accident scenarios, the improvement of TSI, and the development of emergency measures. T2 - IMECE 2023 CY - New Orleans, Louisiana, USA DA - 29.10.2023 KW - LH2 KW - LNG KW - Fire PY - 2023 SP - 1 EP - 7 AN - OPUS4-58768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, D. A1 - Scarponi, G. E. A1 - Cozzani, V. A1 - Otremba, Frank T1 - Insulation Materials Used in Tanks for the Storage of Cryogenic Fluids in Fire Scenarios N2 - The importance of tanks for storing cryogenic fluids in the energy industry is increasing because of ongoing political conflicts and the implementation of more environmentally friendly energy sources. Key representatives for the application of cryogenic tanks are natural gas in the form of Liquefied Natural Gas (LNG) and hydrogen, e. g. in the form of Liquefied Hydrogen (LH2), for which significantly higher transport capacities can be achieved with the same transport volume using cryogenic storages than with storages based solely on overpressure. What applies to all cryogenic transported fluids in common is their condition that must be maintained. Hence heat flows into the preserved fluid must be minimized. Thermal super Insulations (TSI) based on e. g. multilayer insulations (MLI), perlites, and vacuum are utilized for this purpose and have already proven themselves in similar applications. However, for the use of tanks for cryogenic fluids in the transport sector, there is insufficient knowledge regarding the course and consequences of incidents, which is due to the still short period of use and the few documented incidents, hence few investigations carried out in this field. Typical scenarios in the transport sector represent car accidents with collisions, fires, and their combination, which are associated with extraordinary loads on the tank. The focus of this study is to investigate the behavior of TSI as a result of their thermal exposure to a heat source representing a fire. It is worth mentioning that this could lead to an increase of the heat flux into a tank by several orders of magnitude, and to permanent damage of the TSI, ultimately rapid release of flammable gas as well as a Boiling Liquide Expanding Vapour Explosion (BLEVE). For this purpose, a high temperature thermal vacuum chamber (HTTVC) has been developed that allows thermal loading of MLI or perlites in a vacuum and simultaneous measurement of heat flow through this TSI. The HTTVC is designed to represent realistic insulation conditions and to withstand thermal loads from typical design fires. The HTTVC was applied to investigate TSI based on MLI and vacuum. It is shown that the thermal stress caused permanent damage to the TSI, with shrinkage, phase change, pyrolysis, and condensation being significant damage mechanisms. The results are relevant for the evaluation of accident scenarios and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - ASME 2023 Pressure Vessels & Piping Conference (PVP2023) CY - Atlanta, Georgia, USA DA - 16.07.2023 KW - LH2 KW - LNG KW - MLI KW - Fire PY - 2023 SP - 1 EP - 8 PB - ASME AN - OPUS4-57973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Davide, Camplese A1 - Giordano, Emrys Scarponi A1 - Valerio, Cozzani A1 - Frank, Otremba T1 - Experimental investigation on the behavior of thermal super insulation materials for cryogenic storage tanks in fire incidents N2 - The number of vehicles using or transporting cryogenic fuels such as Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) increases fast in the land transportation sector. Does this also entail new risks? The storage of cryogenic fuels requires tanks with Thermal Super Insulations (TSI) to keep the fluid cold and limit the formation of boil-off gas. TSI has proven itself in some applications since the middle of the 20th century, but in the land transport sector they are still quite new, where accidents involving fires, collisions, and their combination are to be expected. This work focuses on investigating the behavior of different types of TSI while exposed to a heat source representing a fire. To this aim, a High-Temperature Thermal Vacuum Chamber (HTTVC) was applied, which allows the thermal loading of a thermal insulation material in a vacuum and measuring the heat flow transported through the TSI in parallel. In this study, the results of 6 samples are presented regarding 3 types of MLI, rock wool, perlites, and microspheres. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as to a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for reducing the risks to people and infrastructures in the progressive establishment of tanks for cryogenic fluids in our industry and society. The data presented in the study can be used to improve the design of tanks and TSIs, the assessment of accident scenarios, and the development of measures for first responders. KW - Liquefied hydrogen KW - Liquefied natural gas KW - Tanks KW - Fire KW - Insulation KW - MLI KW - Perlite KW - Rock wool KW - Microspheres PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599947 DO - https://doi.org/10.1016/j.psep.2024.04.131 SN - 0957-5820 VL - 187 SP - 240 EP - 248 PB - Elsevier AN - OPUS4-59994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank ED - Di Benedetto, Almerinda T1 - Experimental Research Of A Tank For A Cryogenic Fluid With A Wall Rupture In A Fire Scenario N2 - In the course of decarbonizing the energy industry, cryogenic energy carriers as liquefied hydrogen (LH2) and liquefied natural gas (LNG) are seen as having great potential. In technical applications, the challenge is to keep these energy carriers cold for a long time. This is achieved in the road transport sector and also stationary applications by thermal super insulations (TSI) which based on double-walled tanks with vacuum and multilayer insulation (MLI) in the interspace. This study focuses on the behaviour of widely used combustible MLI in a fire scenario, at vacuum and atmospheric pressure conditions. The former corresponds to the typical design condition and the latter to the condition after an outer hull rapture of a tank. Furthermore, two fire scenarios were taken into account: a standard-oriented approach and a hydrocarbon fire-oriented approach. For the study, a test rig was applied that allows testing of TSI at industrial conditions and subsequent analysis of TSI samples. The test rig allows thermal loading and performance analysis of TSI samples at the same time. Comparing the tests, the samples degraded differently. However, no sudden failure of the entire MLI was observed in any test. These results are relevant for the evaluation of incidents with tanks for the storage of cryogenic fluids and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - 15th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Neapel, Italy DA - 10.06.2024 KW - Liquefied hydrogen KW - Liquefied natural gas KW - Cryogenic storage tank KW - Fire KW - Thermal insulation KW - Multi-Layer Insulation PY - 2024 SP - 707 EP - 717 AN - OPUS4-60460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -