TY - JOUR A1 - Horf, M. A1 - Gebbers, R. A1 - Vogel, S. A1 - Ostermann, Markus A1 - Piepel, M.-F. A1 - Olfs, H.-W. T1 - Determination of Nutrients in Liquid Manures and Biogas Digestates by Portable Energy-Dispersive X-ray Fluorescence Spectrometry N2 - Knowing the exact nutrient composition of organic fertilizers is a prerequisite for their appropriate application to improve yield and to avoid environmental pollution by over-fertilization. Traditional standard chemical analysis is cost and time-consuming and thus it is unsuitable for a rapid analysis before manure application. As a possible alternative, a handheld X-ray fluorescence (XRF) spectrometer was tested to enable a fast, simultaneous, and on-site analysis of several elements. A set of 62 liquid pig and cattle manures as well as biogas digestates were collected, intensively homogenized and analysed for the macro plant nutrients phosphorus, potassium, magnesium, calcium, and sulphur as well as the micro nutrients manganese, iron, copper, and zinc using the standard lab procedure. The effect of four different sample preparation steps (original, dried, filtered, and dried filter residues) on XRF measurement accuracy was examined. Therefore, XRF results were correlated with values of the reference analysis. The best R2 s for each element ranged from 0.64 to 0.92. Comparing the four preparation steps, XRF results for dried samples showed good correlations (0.64 and 0.86) for all elements. XRF measurements using dried filter residues showed also good correlations with R2 s between 0.65 and 0.91 except for P, Mg, and Ca. In contrast, correlation Analysis for liquid samples (original and filtered) resulted in lower R2 s from 0.02 to 0.68, except for K (0.83 and 0.87, respectively). Based on these results, it can be concluded that handheld XRF is a promising measuring system for element analysis in manures and digestates. KW - XRF KW - Animal slurry KW - Fertilizer KW - Soil KW - Precision farming PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527622 VL - 21 IS - 11 SP - 3892 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hamann, Christopher A1 - Spanka, M. A1 - Stolle, Dirk A1 - Auer, G. A1 - Weingart, Eric A1 - Al-Sabbagh, Dominik A1 - Ostermann, Markus A1 - Adam, Christian T1 - Recycling of blast-furnace sludge by thermochemical treatment with spent iron(II) chloride solution from steel pickling N2 - One of the typical wastes produced in blast-furnace (BF) ironmaking is BF sludge, which mostly consists of carbon and iron oxides, but also contains toxic trace metals such as Zn, Pb, Cd, As, and Hg that render the material hazardous. Due to the lack of an established recycling process, BF sludges are landfilled, which is ecologically questionable and costly. Here, we investigate selective removal of Zn, Pb, and Cd from BF sludge by chlorination–evaporation reactions using thermodynamic modelling and laboratory-scale experiments. Specifically, BF sludge was thermochemically treated at 650–1000 °C with a spent iron(II) chloride solution from steel pickling and the effects of process temperature and retention time on removal of Zn, Pb, and Cd were investigated. Zinc and Pb were quantitatively removed from BF sludge thermochemically treated at 900–1000 °C, whereas Fe and C as well as other major elements were mostly retained. The Zn, Pb, and Cd contents in the thermochemically treated BF sludge could be lowered from ∼56 g/kg, ∼4 g/kg, and ∼0.02 g/kg to ≤0.7 g/kg, ≤0.02 g/kg, and ≤0.008 g/kg, respectively, thus rendering the processed mineral residue a non-hazardous raw material that may be re-utilized in the blast furnace or on the sinter band. KW - Blast-furnace sludge KW - Selective chlorination KW - Zinc chloride PY - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.123511 SN - 0304-3894 VL - 402 IS - 123511 SP - 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-51141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -