TY - JOUR A1 - Sobol, Oded A1 - Holzlechner, Gerald A1 - Nolze, Gert A1 - Wirth, Thomas A1 - Eliezer, D. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) imaging of deuterium assisted cracking in a 2205 duplex stainless steel microstructure N2 - In the present work, the influence of deuterium on the microstructure of a duplex stainless steel type EN 1.4462 has been characterized by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) supported by scanning electron microscopy (SEM), focused ion beam (FIB), electron back scattered diffraction(EBSD) and energy dispersive x-ray (EDX) investigations. Characterization has been carried out before and after electrochemical charging with deuterium which has been used as a tracer, due to its similar behavior to hydrogen in the steel microstructure. In a first approach, the distribution of the deuterium occurring at temperatures above 58 °C has been visualized. Further it turned out that sub-surface micro blisters are formed in the ferrite-austenite interface, followed by the formation of needle shaped plates and subsequent cracking at the ferrite surface. In the austenite phase, parallel cracking alongside twins and hexagonal close packed (martensitic) regions has been observed. In both phases and even in the apparent interface, cracking has been associated with high deuterium concentrations, as compared to the surrounding undamaged microstructure. Sub-surface blistering in the ferrite has to be attributed to the accumulation and recombination of deuterium at the ferrite-austenite interface underneath the respective ferrite grains and after fast diffusing through this phase. Generally, the present application of chemometric imaging and structural analyses allows characterization of hydrogen assisted degradation at a sub-micron lateral resolution. KW - ToF-SIMS KW - Hydrogen assisted cracking KW - Hydrogen embrittlement KW - SEM KW - FIB KW - EBSD PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0921509316310334 U6 - https://doi.org/10.1016/j.msea.2016.08.107 SN - 0921-5093 VL - 676 SP - 271 EP - 277 PB - Elsevier B.V. AN - OPUS4-37298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Observations of the deuterium distribution and the structural changes in standard and lean duplex stainless steels by ToF-SIMS and EBSD N2 - Duplex (DSS) and austenitic stainless steels (ASS) are frequently used in many energy related applications. The duplex grade is considered to have outstanding mechanical properties as well as good corrosion resistance. The austenitic phase combines high ductility, even at low temperatures, with sufficient strength, and therefore such materials are applied in storage and transport of high-pressure hydrogen. During service in acidic environments large amounts of hydrogen can ingress into the microstructure and induce many changes in the mechanical properties of the steel. Embrittlement of steels by hydrogen remains unclear even though this topic has been intensively studied for several decades. The reason for that lies in the inability to validate the proposed theoretical models in the sub-micron scale. Among the very few available methods nowadays, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) enables a highly accurate mapping of hydrogen in the microstructure in a spatial resolution below 100 nm. In the present work ToF-SIMS was used as a main tool in order to investigate the effect of deuterium on a duplex microstructure of lean and standard DSSs during and after the electrochemical charging process. Electrochemical charging simulates the service of a component in acidic environments under conditions of cathodic protection that are commonly applied to prevent corrosion reactions. ToF-SIMS after multivariate data analysis (MVA) was combined with high resolution topographic images and electron back-scattered diffraction (EBSD) data to characterize the structural changes. It was observed that the ferritic phase was affected almost identical in all steels whereas in the austenitic phase significant differences were obtained in the lean duplex in comparison to the standard DSS. The obtained results have been compared to similar investigations on a AISI 304L austenitic stainless steel. The advantage of the combined techniques is reflected by the ability to correlate the hydrogen distribution in the microstructure and the resulted phase transformation. T2 - Third International Conference on Metals & Hydrogen CY - Ghent, Belgien DA - 29.05.2018 KW - Data-fusion KW - ToF-SIMS KW - PCA KW - DSS KW - LDX KW - EBSD PY - 2018 AN - OPUS4-45094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobol, Oded A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Eliezer, D. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Novel approach to image hydrogen distribution and related phase transformation in duplex stainless steels at the sub-micron scale N2 - The effect of electrochemical charging of hydrogen on the structure of a lean duplex stainless steel LDX 2101® (EN 1.4162, UNS S32101) was examined by both Time-of-Flight secondary ion mass spectrometry and electron back-scatter diffraction. The goal is to correlate hydrogen concentration and induced structural changes. Chemical and structural characterizations were done for the same region at the sample's surface with sub-micron spatial resolution. Regions of interest were varying in size between 50 × 50 μm and 100 × 100 μm. The results show a phase transformation of austenite to mainly a defect-rich BCC and scarcely a HCP phase. The phase transformation occurred in deuterium rich regions in the austenite. KW - Time-of-flight secondary ion mass spectrometry KW - ToF-SIMS KW - Electron backscatter diffraction KW - EBSD KW - Hydrogen-assisted cracking KW - Data fusion KW - Lean duplex stainless steel PY - 2017 U6 - https://doi.org/10.1016/j.ijhydene.2017.08.016 SN - 0360-3199 VL - 42 IS - 39 SP - 25114 EP - 25120 AN - OPUS4-42022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Boellinghaus, Thomas A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Eliezer, D. T1 - High resolution ToF-SIMS imaging of deuterium permeation and cracking in duplex stainless steels N2 - Fundamental understanding and elucidation of hydrogen assisted degradation and trapping mechanisms is dependent on sufficient imaging techniques for respective hydrogen interactions, in particular with multi-phase metallic microstructures. The present work shows the progress in elucidating the deuterium behavior in austenitic-ferritic duplex stainless steels under the consideration that deuterium behaves in many ways similarly to hydrogen. A novel combination of deuterium permeation and in-situ Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) imaging technique is compared with post charging ToF-SIMS imaging experiments. As a step beyond state-of-the-art, integration of chemo-metric and high resolution structural characterization techniques with computational multivariate data analysis (MVA) and data fusion is presented. T2 - 2016 International Hydrogen Conference CY - Grand Teton National Park, Jackson Lake Lodge, Wyoming, USA DA - 11.09.2016 KW - DSS KW - ToF-SIMS KW - Data-fusion KW - EBSD PY - 2017 SN - 978-0-7918-6138-7 SP - 407 EP - 415 PB - ASME Press CY - Two Park Ave. New-York, NY 10016, USA AN - OPUS4-42647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Straub, Franka A1 - Nolze, Gert A1 - Wirth, Thomas A1 - Boellinghaus, Thomas A1 - Unger, Wolfgang T1 - Observations of the deuterium distribution and the structural changes in standard and lean duplex stainless steels by ToF-SIMS and EBSD N2 - The use of duplex stainless steels (DSS) in energy related applications is well known. Nowadays, DSSs become more favorable than austenitic steels due to the outstanding mechanical properties, the good corrosion resistance and the lower nickel content.However, the use of the duplex grade in acidic environments such as seawater can lead to a severe degradation in the structural integrity of the steel by hydrogen-induced/assisted cracking mechanisms, which can eventually result in premature failure. Hydrogen assisted degradation and cracking of steels remains unclear even though this topic is intensively studied for more than a century. The main gap lies in the validation of the proposed theoretical models at the sub-micron scale. Industrial and the research communities define a need for an accurate method by which it is possible to image the distribution of hydrogen in the microstructure. Among the very few available methods nowadays, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) provides precise mapping of hydrogen in the microstructure. Moreover, the powerful combination of ToF-SIMS with multivariate data analysis (MVA), electron backscattered diffraction (EBSD) for providing a the structural information and the use of data fusion techniques can contribute to a better understanding of the hydrogen induced degradation processes in the material. In the present work two types of duplex grades were chosen as a case study (standard and lean DSS). The duplex class, consist of equivalent amounts of ferrite and austenite, was investigated by ToF-SIMS and EBSD during and after electrochemical deuterium charging in order to simulate the service of a component in acidic environments. Deuterium is known to act on the steel similarly to hydrogen and therefore was used as a tracer for hydrogen. The results show that the ferrite was affected almost identical in both steels whereas in the austenitic phase significant differences were observed in the lean duplex in comparison to the standard duplex. The advantage of the combined techniques is reflected by the ability to correlate the hydrogen distribution in the microstructure to the resulted structural changes. T2 - 21st International Conference on Secondary Ion Mass Spectrometry - SIMS21 CY - Krakow, Poland DA - 10.09.2017 KW - ToF-SIMS KW - Duplex-steel KW - EBSD KW - Data-fusion PY - 2017 UR - http://sims.confer.uj.edu.pl/boa_oral.php?id=23 AN - OPUS4-42864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Hydrogen assisted cracking phenomena in duplex stainless steels elucidated by in- and ex-situ ToF-SIMS experiments N2 - In the presented research, the high potential and abilities of secondary ion mass spectrometry (ToF-SIMS) to detect and locally map the hydrogen distribution in two types of duplex stainless steels are shown. The research validates certain proposed mechanisms by combining ToF-SIMS with high-resolution scanning electron microscopy and electron-backscattered diffraction. The combination of data from several techniques on the same region was conducted in this field for the first time by applying data treatment of the ToF-SIMS raw data and data fusion approach. This powerful combination of methods allows reviewing of the occurring processes related to hydrogen assisted cracking. The step beyond the state of the art in this field was gained here by developing permeation and mechanical loading experiments within the ToF-SIMS during chemometric imaging of the hydrogen distribution in the microstructure. The research presents the necessary correlation between the hydrogen distribution and the resulted structural changes, the diffusion behavior in a duplex microstructure and stress induced diffusion of hydrogen by applying external load at the microscale. T2 - 6th WMRIF Early Career Scientist Summit CY - NPL Teddington UK DA - 18.06.2018 KW - ToF-SIMS KW - Duplex stainless steel KW - LDX KW - EBSD KW - Data-fusion PY - 2018 AN - OPUS4-46865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Hänninen, H. A1 - Böllinghaus, Thomas T1 - In-situ ToF-SIMS analyses of deuterium re-distribution in austenitic steel AISI 304L under mechanical load N2 - Hydrocarbons fuel our economy. Furthermore, intermediate goods and consumer products are often hydrocarbon-based. Beside all the progress they made possible, hydrogen-containing substances can have severe detrimental effects on materials exposed to them. Hydrogen-assisted failure of iron alloys has been recognised more than a century ago. The present study aims to providing further insight into the degradation of the austenitic stainless steel AISI 304L (EN 1.4307) exposed to hydrogen. To this end, samples were electrochemically charged with the hydrogen isotope deuterium (2H, D) and analysed by scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that deuterium caused a phase transformation from the original γ austenite into ε- and α’-martensite. Despite their low solubility for hydrogen, viz. deuterium, the newly formed phases showed high deuterium concentration which was attributed to the increased density of traps. Information about the behaviour of deuterium in the material subjected to external mechanical load was gathered. A four-point-bending device was developed for this purpose. This allowed to analyse in-situ pre-charged samples in the ToF-SIMS during the application of external mechanical load. The results indicate a movement of deuterium towards the regions of highest stress. KW - ToF-SIMS KW - Hydrogen KW - Deuterium KW - AISI 304L KW - EBSD PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-505142 VL - 10 IS - 1 SP - 3611 PB - Nature AN - OPUS4-50514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -