TY - JOUR A1 - Jamieson, O. D. A1 - Bell, Jérémy A1 - Hudson, A. A1 - Saczek, J. A1 - Perez-Padilla, Victor A1 - Kaiya, G. A1 - Novakovic, K. A1 - Davies, M. A1 - Foster, E. A1 - Gruber, J. A1 - Rurack, Knut A1 - Peeters, M. T1 - Design and Application of an Imprinted Polymer Sensor for the Dual Detection of Antibiotic Contaminants in Aqueous Samples and Food Matrices N2 - An innovative polymer-based dual detection microfluidic platform has been developed for the accurate and reliable sensing of trace amounts of antibiotic tetracycline in environmental and food samples. This was achieved through the production of a bespoke polymeric material formed via an imprinting technique using a fluorescent dye. Thus, this enables dual detection of tetracycline, both thermally, via analyzing the heat-transfer resistance at the solid−liquid interface, and optically, through the inner filter effect. The combination of these two methods achieved a nanomolar limit of detection for tetracycline while also providing rapid, selective, and cost-effective sensing. Additionally, this method successfully detected tetracycline levels of 0.56 μM in blank egg samples which was significantly lower than the maximum residual level of 400 μg L−1 (0.9 μM). Our work shows that this approach can be used for the efficient detection of trace antibiotics in complex environmental and food samples, offering enhanced reliability through the integration of two complementary analysis techniques. This sensor has the potential to identify sources of antimicrobial resistance, which is crucial for targeted efforts to combat this pressing global health challenge. KW - Molecularly imprinted polymers KW - Antibiotics monitoring KW - Orthogonal detection KW - Sensors PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626497 DO - https://doi.org/10.1021/acsapm.4c03218 SN - 2637-6105 VL - 7 IS - 4 SP - 1 EP - 9 PB - American Chemical Society CY - Washington, D.C. AN - OPUS4-62649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hudson, A.D. A1 - Jamieson, O. A1 - Crapnell, R.D. A1 - Rurack, Knut A1 - Soares, T.C.C. A1 - Mecozzi, F. A1 - Laude, A. A1 - Gruber, J. A1 - Novakovic, K. A1 - Peeters, M. T1 - Dual detection of nafcillin using a molecularly imprinted polymer-based platform coupled to thermal and fluorescence read-out N2 - Reported here is the production of molecularly imprinted polymer (MIP) films, integrating a fluorescent moiety that serves as both an element for template interaction and signalling, for the thermal and optical detection of the beta-lactam antibiotic nafcillin. Fluorescein methacrylate (FluMa) was synthesized and introduced during the molecular imprinting process as the sole monomer and in a 1 : 1 mixture with methacrylic acid (MAA), allowing to draw first conclusions on the MIP formation potential of such a rather large and rigid monomer. At first, MIP microparticles containing FluMa were prepared by free radical polymerisation. Optical batch rebinding experiments revealed that FluMa can act as a functional monomer for selective detection of nafcillin; however, the addition of MAA as co-monomer significantly improved performance. Subsequently, thin MIP films containing FluMa were deposited onto functionalised glass slides and the influence of porogen, drying time, and monomer composition was studied. These MIP-functionalised glass electrodes were mounted into a customised 3D-printed flow cell, where changes in the liquid were either evaluated with a thermal device or using fluorescence bright field microscopy. Thermal analysis demonstrated that multiple MIP layers enhanced sensor specificity, with detection in the environmentally relevant range. The fluorescence bright field microscope investigations validated these results, showing an increase in the fluorescence intensity upon exposure of the MIP-functionalised glass slides to nafcillin solutions. These are promising results for developing a portable sensor device that can be deployed for antibiotics outside of a dedicated laboratory environment, especially if sensor design and fluorophore architecture are optimised. KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Antibiotics KW - Heat-transfer Measurements KW - Thin films PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540044 DO - https://doi.org/10.1039/D1MA00192B VL - 2 IS - 15 SP - 5105 EP - 5115 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-54004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -