TY - JOUR A1 - Grabicki, N. A1 - Nguyen, K. T. G. A1 - Weidner, Steffen A1 - Dumele, O. T1 - Confined Spaces in [n]Cyclo-2,7-pyrenylenes JF - Angewandte Chemie-International Edition N2 - A set of strained aromatic macrocycles based on [n]cyclo2,7-(4,5,9,10-tetrahydro)pyrenylenes is presented with size dependent photophysical properties. The K-region of pyrene was functionalized with ethylene glycol groups to decorate the outer rim and thereby confine the space inside the macrocycle. This confined space is especially pronounced for n = 5, which leads to an internal binding of up to 8.0×104 M–1 between the ether-decorated [5]cyclo-2,7-pyrenylene and shape complementary crown ether–cation complexes. Both, the ether-decorated [n]cyclo-pyrenylenes as well as one of their host–guest complexes have been structurally characterized by single crystal X-ray analysis. In combination with computational methods the structural and thermodynamic reasons for the exceptionally strong binding have been elucidated. The presented rim confinement strategy makes cycloparaphenylenes an attractive supramolecular host family with a favorable, size-independent read-out signature and binding capabilities extending beyond fullerene guests. KW - Cycloparaphenylenes KW - Host–guest systems KW - Macrocycles KW - Molecular recognition KW - Supramolecular chemistry PY - 2021 DO - https://doi.org/10.1002/anie.202102809 SN - 1433-7851 VL - 60 IS - 27 SP - 1 EP - 7 PB - Wiley VCH AN - OPUS4-52517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprachmann, J. A1 - Wachsmuth, T. A1 - Bhosale, M. A1 - Burmeister, D. A1 - Smales, Glen Jacob A1 - Schmidt, M. A1 - Kochovski, Z. A1 - Grabicki, N. A1 - Wessling, R. A1 - List-Kratochvil, E. J. W. A1 - Esser, B. A1 - Dumele, O. T1 - Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes JF - Journal of the American Chemical Society N2 - Despite their inherent instability, 4n π systems have recently received significant attention due to their unique optical and electronic properties. In dibenzopentalene (DBP), benzanellation stabilizes the highly antiaromatic pentalene core, without compromising its amphoteric redox behavior or small HOMO−LUMO energy gap. However, incorporating such molecules in organic devices as discrete small molecules or amorphous polymers can limit the performance (e.g., due to solubility in the battery electrolyte solution or low internal surface area). Covalent organic frameworks (COFs), on the contrary, are highly ordered, porous, and crystalline materials that can provide a platform to align molecules with specific properties in a well-defined, ordered environment. We synthesized the first antiaromatic framework materials and obtained a series of three highly crystalline and porous COFs based on DBP. Potential applications of such antiaromatic bulk materials were explored: COF films show a conductivity of 4 × 10−8 S cm−1 upon doping and exhibit photoconductivity upon irradiation with visible light. Application as positive electrode materials in Li-organic batteries demonstrates a significant enhancement of performance when the antiaromaticity of the DBP unit in the COF is exploited in its redox activity with a discharge capacity of 26 mA h g−1 at a potential of 3.9 V vs. Li/Li+ . This work showcases antiaromaticity as a new design principle for functional framework materials. KW - SAXS KW - MOUSE KW - Covalent Organic Frameworks KW - Batteries PY - 2023 DO - https://doi.org/10.1021/jacs.2c10501 SP - 1 EP - 12 PB - ACS Publications AN - OPUS4-56958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprachmann, J. A1 - Grabicki, N. A1 - Möckel, Anna A1 - Maltitz, J. A1 - del Refugio Monroy Gómez, J. A1 - Smales, Glen Jacob A1 - Dumele, O. T1 - Substituted Benzophenone Imines for COF Synthesis via Formal Transimination JF - Chemical Communications N2 - Covalent organic frameworks (COFs) are a prominent class of organic materials constructed from versatile building blocks via reversible reactions. The quality of imine-linked COFs can be improved by using amine monomers protected with benzophenone forming benzophenone imines. Here, we present a study on substituted benzophenones in COF synthesis via formal transimination. 12 para-substituted N-aryl benzophenone imines, with a range of electron-rich to electron-poor substituents, were prepared and their hydrolysis kinetics were studied spectroscopically. All substituted benzophenone imines can be employed in COF synthesis and lead to COFs with high crystallinity and high porosity. The substituents act innocent to COF formation as the substituted benzophenones are cleaved off. Imines can be tailored to their synthetic demands and utilized in COF formation. This concept can make access to previously unattainable, synthetically complex COF monomers feasible. KW - Materials Chemistry KW - Metals and Alloys KW - Surfaces, Coatings and Films KW - General Chemistry KW - Ceramics and Composites KW - Electronic, Optical and Magnetic Materials KW - Catalysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586449 DO - https://doi.org/10.1039/D3CC03735E SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -