TY - JOUR A1 - Laux, P. A1 - Tentschert, J. A1 - Riebeling, Ch. A1 - Braeuning, A. A1 - Creutzenberg, O. A1 - Epp, A. A1 - Fessard, V. A1 - Haas, K.-H. A1 - Haase, A. A1 - Hund-Rinke, K. A1 - Jakubowski, Norbert A1 - Kearns, P. A1 - Lampen, A. A1 - Rauscher, H. A1 - Schoonjans, R. A1 - Störmer, A. A1 - Thielmann, A. A1 - Mühle, U. A1 - Luch, A. T1 - Nanomaterials: certain aspects of application, risk assessment and risk communication N2 - Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public. KW - Nanomaterials KW - Toxicity KW - Ecotoxicity KW - Standardization KW - Exposure PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-441096 DO - https://doi.org/10.1007/s00204-017-2144-1 VL - 92 IS - 1 SP - 121 EP - 141 PB - Springer AN - OPUS4-44109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juling, S. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Oberemm, A. A1 - Creutzenberg, O. A1 - Thünemann, Andreas A1 - Braeuning, A. A1 - Lampen, A. T1 - Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats N2 - The presence of nano-scaled particles in food and food-related products has drawn attention to the oral uptake of nanoparticles and their interactions with biological systems. In the present study, we used a toxicoproteomics approach to allow for the untargeted experimental identification and comparative analysis of cellular Responses in rat liver after repeated-dose treatment with silver nanoparticles, ions, and the coating matrix used for particle stabilization. The proteomic analysis revealed treatment-related effects caused by exposure to silver in particulate and ionic form. Both silver species induced similar patterns of signaling and metabolic alterations. Silver-induced cellular alterations comprised, amongst others, proteins involved in metal homeostasis, oxidative stress response, and energy metabolism. However, we discovered that secondary nano-scaled structures were formed from ionic silver. Furthermore, also the coating matrix alone gave rise to the formation of nano-scaled particles. The present data confirm, complement, and extend previous knowledge on silver toxicity in rodent liver by providing a comprehensive proteomic data set. The observation of secondary particle formation from nonparticle controls underlines the difficulties in separating particle-, ion-, and matrix coating-related effects in biological systems. Awareness of this issue will support proper evaluation of nanotoxicology-related data in the future. KW - Silver nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2018 DO - https://doi.org/10.1016/j.fct.2018.01.056 SN - 0278-6915 SN - 1873-6351 VL - 113 SP - 255 EP - 266 PB - Elsevier AN - OPUS4-44563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -