TY - CONF A1 - Wurzler, Nina A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Kunte, Hans-Jörg A1 - Özcan Sandikcioglu, Özlem T1 - Changes in the passive film chemistry on stainless steels during microbiologically influenced corrosion: A combined electrochemistry and XANES study N2 - Metal reducing bacteria (MRB) are capable of utilizing different metals, such as iron, chromium, manganese or uranium as well as many organic compounds, as electron acceptors for their metabolism. Via direct and indirect electron transfer processes MRB are able to convert insoluble passive film species like Fe(III)-oxides to soluble Fe(II)-oxides and hydroxides. This weakening of the passive film not only leads to an acceleration of the general corrosion processes, but also increases the susceptibility of stainless steels to pitting corrosion. Electron transfer mechanisms are not yet fully understood and the role of bacteria in corrosion processes is controversially discussed in the literature. Moreover, recent research indicates that the secretion of electron shuttles like riboflavins by MRB also contributes to the extracellular electron transfer. This project aims at clarifying the chemical and electrochemical interaction mechanisms of MRB with stainless steel surfaces. To investigate the changes in the oxide chemistry on the stainless steel surface in the presence of biomolecules and MRB a new flow cell has been designed and constructed which enables the collection of XANES (X-ray Absorption Near Edge Structure) spectra in fluorescence mode at the Fe K-edge and electrochemical analysis. Availability of oxygen and the pre-exposure of the MRB to Fe(III) during cultivation have been investigated as parameters with significant effect on the corrosion rates. XANES analysis is supplemented by ex-situ X-Ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) to complete the surface characterisation in terms of the oxide chemistry and the composition of organic residues. Complementary electrochemical quartz crystal microbalance (e-QCM) measurements have been performed to quantify the kinetics of bacterial attachment and biofilm formation. Together with the frequency shift, the evolution of the dissipation signal has been analyzed to investigate the changes in viscosity and structure of the biofilm from initial stages up to maturation. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) has been used to study the structure and viscoelastic properties of the biofilms after e-QCM experiments. The presentation will summarize our results on the effects of individual surface and environment related parameters on the chemical/electrochemical interaction mechanisms of MRB leading to passive film degradation on stainless steel surfaces and provide useful insights from a fundamental aspect for the development of novel mitigation strategies for microbiologically influenced corrosion. T2 - EUROCORR 2017 & 20thICC CY - Prague, Czech Republic DA - 04.09.2017 KW - Microbiologically influenced corrosion (MIC) KW - XANES KW - Stainless steel KW - Corrosion PY - 2017 AN - OPUS4-43407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wurzler, Nina A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Kunte, Hans-Jörg A1 - Özcan Sandikcioglu, Özlem T1 - Effect of adsorbed organic thin films on electrochemical interaction mechanisms of metal reducing bacteria with steel surfaces N2 - The interface of a metal substrate and a biofilm can differ significantly from the surrounding environment. Metal reducing bacteria (MRB), for instance, are capable of utilizing various metallic compounds as electron acceptors. Besides chromium, uranium and manganese as well as many organic compounds, Fe(III) is converted to the soluble form Fe(II) during the bacterial metabolism. This could lead to a weakening of the protective passivation layer on stainless steel and thereby facilitate microbiologically influenced corrosion (MIC). Even tough the processes of electron transfer are not yet entirely explained, the contribution of flavins and other humic substances as electron shuttles is widely discussed in the literature. Moreover, the adsorption of organic thin films on steel surfaces can lead to surface preconditioning and thus to changes in adhesion behavior of bacteria. The aim of this work is to understand the chemical and electrochemical interaction mechanisms of MRB with steel surfaces by combining electrochemistry and surface-analytical techniques. The investigations primarily focus on the effect of pre-adsorbed thin organic films and self-assembled monolayers (SAMs) on the electron transfer processes between bacteria and steel surfaces. Electrochemical Quartz Crystal Microbalance (eQCM) studies have been performed to investigate the adsorption/desorption kinetics of organic films as well as the formation of biofilms on FeCr electrodes. Furthermore, the evolution of the biofilms on steel surfaces has been analyzed by means of electrochemical impedance spectroscopy (EIS) to support the QCM studies with information on structural changes during different stages of biofilm growth. Electron transfer and corrosion processes have been analyzed by means of square wave voltammetry (SWV) and linear sweep voltammetry (LSV), respectively. The results of electrochemical studies are complemented with microscopic and spectroscopic characterisation of organic adsorbates and analysis of changes in the passive film chemistry and surface morphology. This presentation will summarize our results on the chemical and electrochemical interaction mechanisms of MRB on steel surfaces leading to passive film degradation. The role of flavins in accelerating corrosion processes will be elucidated in detail to provide useful insights from a fundamental aspect for the understanding of the initial stages of microbiologically influenced corrosion in the presence of MRB. T2 - 232nd ECS Meeting CY - National Harbor, MD, USA DA - 01.10.2017 KW - Flavins KW - Metal reducing bacteria (MRB) KW - Microbiologically influenced corrosion (MIC) KW - Corrosion PY - 2017 AN - OPUS4-43463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -