TY - JOUR A1 - Vollmer, Malte A1 - Degener, Sebastian A1 - Bolender, Artjom A1 - Bauer, Andre A1 - Liehr, Alexander A1 - Stark, Andreas A1 - Schell, Norbert A1 - Barriobero-Vila, Pere A1 - Requena, Guillermo A1 - Niendorf, Thomas T1 - Time resolved insights into abnormal grain growth by in situ synchrotron measurements N2 - Large oligo-crystalline or single-crystalline metallic materials are of great interest for numerous applications, and a recently developed strategy for promoting abnormal grain growth induced by a cyclic heat treatment opens up new opportunities to manufacture single crystals with a size of several centimeters. So far, the entire available knowledge on this kind of abnormal grain growth has been elaborated based on time discrete observations and, thus, detailed insights into the interplay of elementary mechanisms are still lacking in open literature. The present study reveals time resolved insights into this kind of abnormal grain growth for the first time. It was possible to break down the influence of the individual heat treatment phases by in situ synchrotron high energy X-ray diffraction analysis during cyclic heat reatment. The results obtained not only help to gain a deep understanding of the abnormal grain growth mechanisms, they will also be the basis for an adjustment of the cyclic heat treatment process to improve its efficiency and to eventually obtain even larger single crystals. KW - Single crystals KW - Grain growth method KW - Synchrotron diffraction KW - High-energy X-ray diffraction KW - Grain boundary migration PY - 2023 DO - https://doi.org/10.1016/j.actamat.2023.119168 SN - 1359-6454 VL - 257 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-62188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauhoff, Christian A1 - Degener, Sebastian A1 - Bolender, Artjom A1 - Liehr, Alexander A1 - Hübner, Leoni A1 - Frenck, Johanna-Maria A1 - Molotnikov, Andrey A1 - Niendorf, Thomas T1 - In Situ Synchrotron Diffraction Assessment of Reversibility of the Martensitic Transformation in Single-Crystalline Co–Ni–Ga Shape Memory Alloy Under Torsion N2 - AbstractHeusler-type Co–Ni–Ga shape memory alloys attracted significant attention due to their excellent functional properties in single-crystalline state under both compressive and tensile loading. The present study investigates the superelastic deformation behavior under torsion. Using a newly installed torsion testing setup, in situ synchrotron diffraction was carried out on single-crystalline material in order to investigate the martensitic phase transformation. Incremental deformation experiments reveal a fully reversible martensitic transformation under torsional loading at room temperature, leading to excellent strain recovery after deformation to 6.5% shear strain. Furthermore, relevant aspects towards the analysis of powder diffraction data obtained for single-crystalline material in transmission mode under torsional loading are presented and critically discussed. KW - Shape memory alloy KW - Pseudoelasticity KW - Martensitic transformation KW - Synchrotron diffraction KW - In situ testing KW - Torsion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621872 DO - https://doi.org/10.1007/s40830-024-00496-8 VL - 10 SP - 326 EP - 333 PB - Springer Science and Business Media LLC AN - OPUS4-62187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -