TY - JOUR A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Säämänen, A. A1 - Schaffernicht, E. A1 - Lilienthal, A. J. ED - Zemčík, R. ED - Krystek, J. T1 - High-quality meets low-cost: Approaches for hybrid-mobility sensor networks N2 - Air pollution within industrial scenarios is a major risk for workers, which is why detailed knowledge about the dispersion of dusts and gases is necessary. This paper introduces a system combining stationary low-cost and high-quality sensors, carried by ground robots and unmanned aerial vehicles. Based on these dense sampling capabilities, detailed distribution maps of dusts and gases will be created. This system enables various research opportunities, especially on the fields of distribution mapping and sensor planning. Standard approaches for distribution mapping can be enhanced with knowledge about the environment’s characteristics, while the effectiveness of new approaches, utilizing neural networks, can be further investigated. The influence of different sensor network setups on the predictive quality of distribution algorithms will be researched and metrics for the quantification of a sensor network’s quality will be investigated. T2 - 36th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Mobile robot olfaction KW - Air quality monitoring KW - Wireless sensor network KW - Gas distribution mapping KW - Occupational health PY - 2020 DO - https://doi.org/10.1016/j.matpr.2020.05.799 VL - 32 SP - 250 EP - 253 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-51108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Schaffernicht, E. A1 - Lilienthal, A. J. T1 - Using Redundancy in a Sensor Network to Compensate Sensor Failures N2 - Wireless sensor networks provide occupational health experts with valuable information about the distribution of air pollutants in an environment. However, especially low-cost sensors may produce faulty measurements or fail completely. Consequently, not only spatial coverage but also redundancy should be a design criterion for the deployment of a sensor network. For a sensor network deployed in a steel factory, we analyze the correlations between sensors and build machine learning forecasting models, to investigate how well the sensor network can compensate for the outage of sensors. While our results show promising prediction quality of the models, they also indicate the presence of spatially very limited events. We, therefore, conclude that initial measurements with, e.g., mobile units, could help to identify important locations to design redundant sensor networks. T2 - IEEE SENSORS 2021 CY - Online meeting DA - 31.10.2021 KW - Environmental monitoring KW - Wireless sensor network KW - Sensor placement KW - Machine learning PY - 2021 SN - 978-1-7281-9501-8 DO - https://doi.org/10.1109/sensors47087.2021.9639479 SP - 1 EP - 4 PB - IEEE AN - OPUS4-53939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Erdmann, Jessica A1 - Schaffernicht, Erik A1 - Lilienthal, Achim J. T1 - Development of a Low-Cost Sensing Node with Active Ventilation Fan for Air Pollution Monitoring N2 - A fully designed low-cost sensing node for air pollution monitoring and calibration results for several low-cost gas sensors are presented. As the state of the art is lacking information on the importance of an active ventilation system, the effect of an active fan is compared to the passive ventilation of a lamellar structured casing. Measurements obtained in an urban outdoor environment show that readings of the low-cost dust sensor (Sharp GP2Y1010AU0F) are distorted by the active ventilation system. While this behavior requires further research, a correlation with temperature and humidity inside the node shown. T2 - SMSI 2021 Conference: Sensor and Measurement Science International CY - Online meeting DA - 03.05.2021 KW - Wireless sensing node KW - Air pollution KW - Sensor network KW - Environmental monitoring PY - 2021 DO - https://doi.org/10.5162/SMSI2021/D3.5 VL - 2021 SP - 260 EP - 261 AN - OPUS4-52607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Matsukura, H. A1 - Neumann, Patrick P. A1 - Schaffernicht, E. A1 - Ishida, H. A1 - Lilienthal, A. J. ED - Rudnitskaya, A. T1 - Super-Resolution for Gas Distribution Mapping: Convolutional Encoder-Decoder Network N2 - Gas distribution mapping is important to have an accurate understanding of gas concentration levels in hazardous environments. A major problem is that in-situ gas sensors are only able to measure concentrations at their specific location. The gas distribution in-between the sampling locations must therefore be modeled. In this research, we interpret the task of spatial interpolation between sparsely distributed sensors as a task of enhancing an image's resolution, namely super-resolution. Because autoencoders are proven to perform well for this super-resolution task, we trained a convolutional encoder-decoder neural network to map the gas distribution over a spatially sparse sensor network. Due to the difficulty to collect real-world gas distribution data and missing ground truth, we used synthetic data generated with a gas distribution simulator for training and evaluation of the model. Our results show that the neural network was able to learn the behavior of gas plumes and outperforms simpler interpolation techniques. T2 - 19th International Symposium on Olfaction and Electronic Nose CY - Aveiro, Portugal DA - 29.05.2022 KW - Gas Distribution Mapping KW - Spatial Interpolation KW - Deep Learning KW - Super-Resolution KW - Sensor Network PY - 2022 SN - 978-1-6654-5860-3 DO - https://doi.org/10.1109/isoen54820.2022.9789555 SP - 1 EP - 3 PB - IEEE CY - USA AN - OPUS4-54955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Winkler, Nicolas P. A1 - Schugardt, Jan ED - Rudnitskaya, A. T1 - Remote Drone-to-Drone Gas Sensing: A Feasibility Study N2 - Remote gas sensors mounted on mobile robots enable the mapping of gas distributions in large or poorly accessible areas. A challenging task however, is the generation of three-dimensional distribution maps from these spatially sparse gas measurements. To obtain high-quality reconstructions, the choice of optimal measuring poses is of great importance. Remote gas sensors, that are commonly used in Robot Assisted Gas Tomography (RAGT), require reflecting surfaces within the sensor’s range, limiting the possible sensing geometries, regardless of whether the robots are ground-based or airborne. By combining ground and aerial robots into a heterogeneous swarm whose agents are equipped with reflectors and remote gas sensors, remote inter-robot gas measurements become available, taking RAGT to the next dimension – releasing those constraints. In this paper, we demonstrate the feasibility of drone-to-drone measurements under realistic conditions and highlight the resulting opportunities. T2 - 19th International Symposium on Olfaction and Electronic Nose CY - Aveiro, Portugal DA - 29.05.2022 KW - Aerial robot KW - TDLAS KW - Inter-robot measurements KW - Gas tomography KW - Plume PY - 2022 SN - 978-1-6654-5860-3 DO - https://doi.org/10.1109/isoen54820.2022.9789627 SP - 1 EP - 3 PB - IEEE CY - USA AN - OPUS4-54926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. T1 - Revisiting Environmental Sensing Nodes: Lessons Learned and Way Forward N2 - Setting up sensors for the purpose of environmental monitoring should be a matter of days, but often drags over weeks or even months, preventing scientists from doing real research. Additionally, the newly developed hardware and software solutions are often reinventing existing wheels. In this short paper, we revisit the design of our environmental sensing node that has been monitoring industrial areas over a span of two years. We share our findings and lessons learned. Based on this, we outline how a new generation of sensing node(s) can look like. T2 - SMSI 2023 Conference Sensor and Measurement Science International CY - Nuremberg, Germany DA - 08.05.2023 KW - Sensing node KW - Sensor network KW - Environmental monitoring KW - Low-cost KW - LoRaWAN PY - 2023 SN - 978-3-9819376-8-8 DO - https://doi.org/10.5162/SMSI2023/C5.1 SP - 173 EP - 174 PB - AMA Service GmbH CY - Wunstorf AN - OPUS4-57454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Schaffernicht, E. A1 - Lilienthal, A. J. A1 - Poikkimäki, M. A1 - Kangas, A. A1 - Säämänen, A. ED - Kourkoulis, S. K. T1 - Gather Dust and Get Dusted: Long-Term Drift and Cleaning of Sharp GP2Y1010AU0F Dust Sensor in a Steel Factory N2 - The Sharp GP2Y1010AU0F is a widely used low-cost dust sensor, but despite its popularity, the manufacturer provides little information on the sensor. We installed 16 sensing nodes with Sharp dust sensors in a hot rolling mill of a steel factory. Our analysis shows a clear correlation between sensor drift and accumulated production of the steel factory. An eye should be kept on the long-term drift of the sensors to prevent early saturation. Two of 16 sensors experienced full saturation, each after around eight and ten months of operation. T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Poros, Greece DA - 20.09.2022 KW - Low-cost KW - Dust sensor KW - Sensor network KW - Sensor drift PY - 2022 SP - 1 EP - 2 CY - Athens, Greece AN - OPUS4-55909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Johann, Sergej A1 - Erdmann, Jessica A1 - Winkler, Nicolas P. ED - Kourkoulis, S. K. T1 - The RASEM System: A Technical Overview N2 - Occupational health is an important topic, especially in industry, where workers are exposed to airborne by-products (e.g., dust particles and gases). Therefore, continuous monitoring of the air quality in industrial environments is crucial to meet safety standards. For practical and economic reasons, high-quality, costly measurements are currently only carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. The project “Robot-assisted Environmental Monitoring for Air Quality Assessment in Industrial Scenarios” (RASEM) addresses this issue by bringing together the benefits of both – low- and high-cost – measuring technologies enabling costefficient long-term air quality monitoring in realtime: A stationary network of low-cost sensors that is augmented by mobile units carrying high-quality sensors. By mapping the distribution of gases and particles in industrial environments with the proposed RASEM system, measures can be identified to improve on-site working conditions much faster than using traditional methods. In this paper, we detail the technical aspects of RASEM and introduce the mobile platforms used. T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Poros, Greece DA - 20.09.2022 KW - RASEM KW - Dust sensor KW - Low-cost KW - Sensor network KW - Ground Robot KW - Aerial Robot PY - 2022 SP - 1 EP - 2 CY - Athens, Greece AN - OPUS4-55915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Kotlyar, O. A1 - Schaffernicht, E. A1 - Fan, H. A1 - Matsukura, H. A1 - Ishida, H. A1 - Neumann, Patrick P. A1 - Lilienthal, A. J. ED - Tardioli, D. ED - Matellán, V. ED - Heredia, G. ED - Silva, M. F. ED - Marques, L. T1 - Learning From the Past: Sequential Deep Learning for Gas Distribution Mapping N2 - To better understand the dynamics in hazardous environments, gas distribution mapping aims to map the gas concentration levels of a specified area precisely. Sampling is typically carried out in a spatially sparse manner, either with a mobile robot or a sensor network and concentration values between known data points have to be interpolated. In this paper, we investigate sequential deep learning models that are able to map the gas distribution based on a multiple time step input from a sensor network. We propose a novel hybrid convolutional LSTM - transpose convolutional structure that we train with synthetic gas distribution data. Our results show that learning the spatial and temporal correlation of gas plume patterns outperforms a non-sequential neural network model. T2 - ROBOT2022: Fifth Iberian Robotics Conference CY - Zaragoza, Spain DA - 22.11.2022 KW - Gas Distribution Mapping KW - Spatial Interpolation KW - Sequential Learning KW - Convolutional LSTM PY - 2023 SN - 978-3-031-21061-7 DO - https://doi.org/10.1007/978-3-031-21062-4_15 SP - 178 EP - 188 PB - Springer International Publishing AN - OPUS4-56414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkler, Nicolas P. A1 - Kotlyar, O. A1 - Schaffernicht, E. A1 - Matsukura, H. A1 - Ishida, H. A1 - Neumann, Patrick P. A1 - Lilienthal, A. J. T1 - Super-resolution for Gas Distribution Mapping N2 - Gas Distribution Mapping (GDM) is a valuable tool for monitoring the distribution of gases in a wide range of applications, including environmental monitoring, emergency response, and industrial safety. While GDM is actively researched in the scope of gas-sensitive mobile robots (Mobile Robot Olfaction), there is a potential for broader applications utilizing sensor networks. This study aims to address the lack of deep learning approaches in GDM and explore their potential for improved mapping of gas distributions. In this paper, we introduce Gas Distribution Decoder (GDD), a learning-based GDM method. GDD is a deep neural network for spatial interpolation between sparsely distributed sensor measurements that was trained on an extensive data set of realistic-shaped synthetic gas plumes based on actual airflow measurements. As access to ground truth representations of gas distributions remains a challenge in GDM research, we make our data sets, along with our models, publicly available. We test and compare GDD with state-of-the-art models on synthetic and real-world data. Our findings demonstrate that GDD significantly outperforms existing models, demonstrating a 35% improvement in accuracy on synthetic data when measured using the Root Mean Squared Error over the entire distribution map. Notably, GDD appears to have superior capabilities in reconstructing the edges and characteristic shapes of gas plumes compared to traditional models. These potentials offer new possibilities for more accurate and efficient environmental monitoring, and we hope to inspire other researchers to explore learning-based GDM. KW - Gas distribution mapping KW - Spatial interpolation KW - Sensor networks KW - Deep learning PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607786 DO - https://doi.org/10.1016/j.snb.2024.136267 SN - 0925-4005 VL - 419 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-60778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Schaffernicht, Erik A1 - Lilienthal, Achim T1 - Gas Distribution Mapping With Radius-Based, Bi-directional Graph Neural Networks (RABI-GNN) N2 - Gas Distribution Mapping (GDM) is essential in monitoring hazardous environments, where uneven sampling and spatial sparsity of data present significant challenges. Traditional methods for GDM often fall short in accuracy and expressiveness. Modern learning-based approaches employing Convolutional Neural Networks (CNNs) require regular-sized input data, limiting their adaptability to irregular and sparse datasets typically encountered in GDM. This study addresses these shortcomings by showcasing Graph Neural Networks (GNNs) for learningbased GDM on irregular and spatially sparse sensor data. Our Radius-Based, Bi-Directionally connected GNN (RABI-GNN) was trained on a synthetic gas distribution dataset on which it outperforms our previous CNN-based model while overcoming its constraints. We demonstrate the flexibility of RABI-GNN by applying it to real-world data obtained in an industrial steel factory, highlighting promising opportunities for more accurate GDM models. T2 - International Symposium on Olfaction and Electronic Nose (ISOEN) CY - Grapevine, TX, USA DA - 12.05.2024 KW - Gas distribution mapping KW - Spatial interpolation KW - Graph neural networks KW - Mobile robot olfaction PY - 2024 SN - 979-8-3503-7053-9 DO - https://doi.org/10.1109/isoen61239.2024.10556309 SP - 1 EP - 3 PB - IEEE AN - OPUS4-60103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Winkler, Nicolas P. A1 - Lohrke, Heiko A1 - Lilienthal, A. J. ED - Lee, J. B. T1 - Outdoor Gas Plume Reconstructions: A Field Study with Aerial Tomography N2 - This paper outlines significant advancements in our previously developed aerial gas tomography system, now optimized to reconstruct 2D tomographic slices of gas plumes with enhanced precision in outdoor environments. The core of our system is an aerial robot equipped with a custom-built 3-axis aerial gimbal, a Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor for CH4 measurements, a laser rangefinder, and a wide-angle camera, combined with a state-of-the-art gas tomography algorithm. In real-world experiments, we sent the aerial robot along gate-shaped flight patterns over a semi-controlled environment with a static-like gas plume, providing a welldefined ground truth for system evaluation. The reconstructed cross-sectional 2D images closely matched the known ground truth concentration, confirming the system’s high accuracy and reliability. The demonstrated system’s capabilities open doors for potential applications in environmental monitoring and industrial safety, though further testing is planned to ascertain the system’s operational boundaries fully. T2 - 20th International Symposium on Olfaction and Electronic Nose CY - Grapevine, Texas, USA DA - 12.05.2024 KW - Aerial robot KW - TDLAS KW - Gas Tomography KW - Plume PY - 2024 SN - 979-8-3503-4865-1 DO - https://doi.org/10.1109/isoen61239.2024.10556071 SP - 1 EP - 3 PB - IEEE CY - USA AN - OPUS4-60107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Winkler, Nicolas P. A1 - Nerger, Tino A1 - Lohrke, Heiko A1 - Stanisavljevi, Mila T1 - DLR Research Seminar - ARO Lab@BAM – Current Research Topics N2 - This seminar presents the key research activities of ARO Lab@BAM, focusing on five main areas: • Learning-based Gas Distribution Mapping utilizes machine learning to accurately model and predict spatial gas concentrations, enhancing environmental monitoring and safety. • Mimose-A develops autonomous systems using artificial intelligence to enable the early detection of leaks in industrial environments. • AGATO (Gastomography) introduces a novel robotic system for high-resolution gas distribution mapping. • Passive Smart Dust detects chemically hazardous substances using drones equipped to distribute and detect particles carrying selective dyes, enabling rapid and reliable monitoring without complex components. • HyAirLogic Lab advances hydrogen (H₂) research by testing the entire value chain in various Berlin-Brandenburg quarters, addressing technological challenges, public acceptance, and sustainable energy solutions for H₂-cargo drones. T2 - DLR Research Seminar CY - Weßling, Germany DA - 04.11.2024 KW - Aerial robot KW - Learning Based Gas Distribution Mapping KW - Mobile Robotic Olfaction KW - Aerial-based Gas Tomography KW - Passive Smart Dust PY - 2024 AN - OPUS4-61611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Schaffernicht, E. A1 - Lilienthal, A. J. T1 - Heterogeneous Sensor Networks: Challenges and Insights from an Industrial Scenario N2 - Monitoring airborne pollutants is critical for occupational health, particularly in industrial environments where workers are exposed to hazardous emissions. Traditional measurements are typically limited to single-day campaigns, resulting in extremely sparse temporal data. Low-cost sensor networks offer a way to increase spatial and temporal resolution but are limited by issues of accuracy and reliability. To address this, we present a wireless heterogeneous sensor network that integrates low-cost stationary nodes with high-quality sensors on mobile platforms, including ground and aerial robots. We deploy this system in a hot rolling mill facility and evaluate its performance under real-world conditions. Field experiments reveal dynamic pollutant patterns, such as altitude-dependent PM2.5 gradients and temperature fluctuations. By introducing synchronized “rendezvous” events between mobile and stationary nodes, we demonstrate correlation capabilities of sensors. Our spatiotemporal analysis shows that, despite limitations of mobile sensing, strategically combining heterogeneous data sources enables capturing pollutant dynamics in complex industrial settings. T2 - IEEE SENSORS 2025 CY - Vancouver, BC, Kanada DA - 19.10.2025 KW - Environmental monitoring KW - Sensor data fusion KW - Sensor system networks KW - Mobile robotics PY - 2025 SN - 979-8-3315-4467-6 SP - 1 EP - 4 PB - IEEE CY - Piscataway, NJ, USA AN - OPUS4-64501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Winkler, Nicolas P. A1 - Nerger, Tino A1 - Lohrke, Heiko A1 - Bartholmai, Matthias T1 - Robotic Olfaction in Action: Field Applications and Results from Current Research N2 - In recent decades, robotics, particularly in environmental monitoring, has made significant advances. Robots of various forms and sizes have become essential tools for data collection in environmental research. Mobile Robot Olfaction (MRO) involves mobile robots equipped with gas sensors and requires the integration of multiple disciplines, including signal processing, machine perception, autonomous navigation, and pattern recognition. Common applications of MRO include mapping gas distributions, locating and detecting gas sources, and tracking gas plumes. Aerial Robot Olfaction (ARO) is a specialized branch of MRO that adapts these concepts to aerial robots, addressing the challenges of airborne gas sensing. This presentation highlights recent developments and results from ongoing research projects in MRO and ARO, with a focus on real-world deployment scenarios and the challenges encountered in practice. T2 - Drohnen in der Zerstörungsfreien Prüfung CY - Magdeburg, Germany DA - 26.11.2025 KW - Ground and Aerial robots KW - Gas distribution mapping KW - Gas source localization KW - Gas Tomography KW - Mobile Robotic Olfaction PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648928 UR - https://www.ndt.net SP - 1 EP - 15 PB - DGZfP AN - OPUS4-64892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Albizu, Natalia A1 - Schaffernicht, Erik A1 - Lilienthal, Achim J. T1 - GNN-DM: A Graph Neural Network Framework for Real-World Gas Distribution Mapping N2 - Gas distribution mapping (GDM) is essential for industrial safety and environmental monitoring, as it enables real-time hazard detection and air quality assessment. Traditional GDM methods, such as kernel-based techniques, struggle to reconstruct complex gas plume dynamics accurately. While deep learning has shown promise for GDM, two critical challenges hinder its practical use: the scarcity of available training data and the incompatibility of conventional architectures with irregular sensor layouts. To address these limitations, we propose GNN-DM, a graph neural network-based model for GDM that incorporates the relational structure of sensor networks to infer high-resolution maps from minimal, irregular inputs. The model is pretrained on synthetic gas dispersion data generated from measured wind data and fine-tuned on two industrial datasets collected on a ferry car deck and in a hot rolling mill. Compared with established GDM techniques, GNN-DM achieves higher accuracy on synthetic and real-world data, highlighting the potential of graph-based learning for practical gas mapping applications. KW - Environmental monitoring KW - Sensor networks KW - Transfer learning KW - Deep learning PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647363 DO - https://doi.org/10.1109/JSEN.2025.3617158 SN - 1530-437X VL - 25 IS - 22 SP - 42171 EP - 42179 PB - Institute of Electrical and Electronics Engineers (IEEE) AN - OPUS4-64736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Lilienthal, A. J. A1 - Neumann, Patrick P. ED - Zemčík, R. ED - Krystek, J. T1 - Boosting a Low-Cost Sensor Network with Mobile High-Quality Sensors N2 - Occupational health is an important topic, especially in industry, where workers are exposed to airborne by-products (e.g., dust particles and gases). Therefore, continuous monitoring of the air quality in industrial environments is crucial to meet safety standards. For practical and economic reasons, high-quality, costly measurements are currently only carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Recent developments in sensor technology enable cost-efficient gas monitoring in real-time for long-term intervals. This knowledge of contaminant distribution inside the industrial environment would provide means for better and more economic control of air impurities, e.g., the possibility to regulate the workspace’s ventilation exhaust locations, can reduce the concentration of airborne contaminants by 50%. This paper describes a concept proposed in the project “Robot-assisted Environmental Monitoring for Air Quality Assessment in Industrial Scenarios“ (RASEM). RASEM aims to bring together the benefits of both – low- and high-cost – measuring technologies: A stationary network of low-cost sensors shall be augmented by mobile units carrying high-quality sensors. Additionally, RASEM will develop procedures and algorithms to map the distribution of gases and particles in industrial environments. T2 - 36th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - RASEM KW - Sensor network KW - Low-cost KW - Occupational health KW - Mobile Robot Olfaction PY - 2019 SP - 61 EP - 62 CY - Plzeň AN - OPUS4-49630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias A1 - Bennetts, V. H. A1 - Lilienthal, A. J. T1 - Remote Gas Sensing with Multicopter-Platforms N2 - This presentation gives an introduction to the gas-sensitive aerial robots developed at BAM, including various application examples in the field of mobile robot olfaction: gas source localization and gas distribution mapping. T2 - Zweites Innovationsforum "Autonome, mobile Dienste; Services für Mobilität" CY - Berlin, Germany DA - 04.06.2019 KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS); UAV-REGAS KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Nano UAV Swarm KW - Tomographic reconstruction of gas plumes PY - 2019 UR - http://modisem.de/files/Ereignisse/2019-06/Innovationsforum_Downloads/IF2_2019_Tagungsband_WEB.pdf SN - 978-3-942709-22-4 N1 - Tagungsband auf Deutsch, Beitrag auf Englisch. VL - 2019 SP - 24 EP - 34 AN - OPUS4-48699 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. T1 - Mapping the Distribution of Air Pollutants with Mobile Robots and Stationary Sensors N2 - Precise knowledge about the distribution of air pollutants is necessary to develop plausible occupational health measures. Combinatory systems, consisting of mobile robots and stationary sensors, can be effective solutions for the coverage of large measurement areas. However, further research is needed to fully understand their performance in comparison to traditional sensing strategies. Therefore, multiple sensor networks layouts will be set up in a simulation environment as well as in real industrial environments. Models for distribution mapping will be developed and evaluated to investigate the performance and opportunities of hybrid-mobility sensor networks for the task of distribution mapping. T2 - AASS Seminar CY - Online meeting DA - 24.09.2020 KW - Mobile Robot Olfaction KW - Aerial Robot Olfaction KW - Wireless Sensor Network KW - Occupational Health PY - 2020 AN - OPUS4-51399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. T1 - Breaking the wall of air pollution monitoring N2 - Air pollution in industrial environments is a major risk. Precise knowledge about the distribution of air pollutants is necessary to develop plausible occupational health measures. Combinatory systems, consisting of mobile robots and stationary sensors, can be effective solutions for the coverage of large measurement areas. T2 - Falling Walls Adlershof CY - Online meeting DA - 02.10.2020 KW - Mobile Robot Olfaction KW - Aerial Robot Olfaction KW - Occupational Health KW - Wireless Sensor Network PY - 2020 AN - OPUS4-51400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -