TY - JOUR A1 - Janssen, J. A1 - Makarov, E. A1 - Hickel, Tilmann A1 - Shapeev, A.V. A1 - Neugebauer, J. T1 - Automated optimization and uncertainty quantification of convergence parameters in plane wave density functional theory calculations N2 - First principles approaches have revolutionized our ability in using computers to predict, explore, and design materials. A major advantage commonly associated with these approaches is that they are fully parameter-free. However, numerically solving the underlying equations requires to choose a set of convergence parameters. With the advent of high-throughput calculations, it becomes exceedingly important to achieve a truly parameter-free approach. Utilizing uncertainty quantification (UQ) and linear decomposition we derive a numerically highly efficient representation of the statistical and systematic error in the multidimensional space of the convergence parameters for plane wave density functional theory (DFT) calculations. Based on this formalism we implement a fully automated approach that requires as input the target precision rather than convergence parameters. The performance and robustness of the approach are shown by applying it to a large set of elements crystallizing in a cubic fcc lattice. KW - Ab initio simulations KW - High throughput KW - convergence parameter PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618632 DO - https://doi.org/10.1038/s41524-024-01388-2 VL - 10 IS - 1 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-61863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, X. A1 - Mathews, P. A1 - Berkels, B. A1 - Delis, W. A1 - Saood, S. A1 - Alhassan, A. A1 - Keuter, P. A1 - Schneider, J. A1 - Korte-Kerzel, S. A1 - Sandlöbes, S. A1 - Raabe, D. A1 - Neugebauer, j. A1 - Dehm, G. A1 - Hickel, Tilmann A1 - Scheu, C. A1 - Zhang, S. T1 - Materials Design by Constructing Phase Diagrams for Defects N2 - Phase transformations and crystallographic defects are two essential tools todrive innovations in materials. Bulk materials design via tuning chemicalcompositions is systematized using phase diagrams. It is shown here that thesame thermodynamic concept can be applied to manipulate the chemistry atdefects. Grain boundaries in Mg–Ga system are chosen as a model system,because Ga segregates to the boundaries, while simultaneously improving thestrength and ductility of Mg alloys. To reveal the role of grain boundaries,correlated atomic-scale characterization and simulation to scope and buildphase diagrams for defects are presented. The discovery is enabled bytriggering phase transformations of individual grain boundaries through localalloying, and sequentially imaging the structural and chemical changes usingatomic-resolution scanning transmission electron microscopy. Ab initiosimulations determined the thermodynamic stability of grain boundaryphases, and found out that increasing Ga content enhances grain boundarycohesion, relating to improved ductility. The methodology to trigger, trace,and simulate defect transformation at atomic resolution enables a systematicdevelopment of defect phase diagrams, providing a valuable tool to utilizechemical complexity and phase transformations at defects. KW - Automatic pattern recognition KW - Defect phase diagram KW - Density functional theory KW - Grain boundary complexion KW - Transmission electron microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618063 DO - https://doi.org/10.1002/adma.202402191 SN - 1521-4095 SP - 1 EP - 9 PB - Wiley AN - OPUS4-61806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ward, H. A1 - Burger, M. A1 - Chang, Y.-J. A1 - Fürstmann, P. A1 - Neugebauer, S. A1 - Radebach, A. A1 - Sproesser, G. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Uhlmann, E. A1 - Steckel, J. Ch. T1 - Assessing carbon dioxide emission reduction potentials of improved manufacturing processes using multiregional input output frameworks N2 - Evaluating innovative process technologies has become highly important within the last decades. As standard tools different Life Cycle Assessment methods have been established, which are continuously improved. While those are designed for evaluating single processes they run into difficulties when it comes to assessing environmental impacts of process innovations at macroeconomic level. In this paper we develop a multi-step evaluation framework building on multi regional inputeoutput data that allows estimating macroeconomic impacts of new process technologies, considering the network characteristics of the global economy. Our procedure is as follows: i) we measure differences in material usage of process alternatives, ii) we identify where the standard processes are located within economic networks and virtually replace those by innovative process technologies, iii) we account for changes within economic systems and evaluate impacts on emissions. Within this paper we exemplarily apply the methodology to two recently developed innovative technologies: longitudinal large diameter steel pipe welding and turning of high-temperature resistant materials. While we find the macroeconomic impacts of very specific process innovations to be small, its conclusions can significantly differ from traditional process based approaches. Furthermore, information gained from the methodology provides relevant additional insights for decision makers extending the picture gained from traditional process life cycle assessment. KW - Economic wide technology replacement KW - Sustainability assessment KW - Multi-regional inputeoutput data KW - Life-cycle assessment KW - Greenhouse gas mitigation KW - Process innovations PY - 2017 DO - https://doi.org/10.1016/j.jclepro.2016.02.062 SN - 0959-6526 SN - 1879-1786 VL - 163 SP - 154 EP - 165 PB - Elsevier Ltd. AN - OPUS4-41356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulze, M. A1 - Neugebauer, M. A1 - Meeß, R. A1 - Brzoska, J. A1 - Jung, A. A1 - Staude, Andreas A1 - Ehrig, Karsten T1 - Der Einfluss unterschiedlicher Materialzusammensetzungen auf das dimensionelle Messen von Mikroobjekten mittels Mikro-Computertomographie N2 - Computertomographische Aufnahmen von Objekten mit stark voneinander abweichenden Absorptionseigenschaften stellen sowohl für den Anwendungsbereich der zerstörungsfreien Prüfung als auch für den der dimensionellen Messtechnik eine besondere Herausforderung dar. Die Aufnahmekonfiguration kann bei Objekten dieser Art häufig nicht so gewählt werden, dass die unterschiedlichen Materialeigenschaften mit ausreichender Qualität abgebildet werden können. Aus diesem Grund ist eine objektive Bewertung der Oberflächenmessung mit Hilfe eines in dieser Untersuchung eingeführten Qualitätsmaßes erforderlich. Anhand der in dieser Arbeit vorgestellten Prüfkörperserie soll der Einfluss der Materialzusammensetzung auf das dimensionelle Messen mit CT erfasst und charakterisiert werden. Unter Berücksichtigung der Qualitätsbewertung der Oberflächenpunkte erfolgt die Berechnung der Form- und Abstandsabweichungen. Ziel ist es, die Genauigkeit der Oberflächenmessung hinsichtlich unterschiedlicher Aufnahmeparameter und Materialzusammensetzungen darzustellen. Anhand dieser Ergebnisse ist es möglich, den computertomographischen Aufnahme- und Auswertungsprozess quantitativ zu bewerten und Ursachen der Abweichungen zu diskutieren. T2 - DGZfP-Jahrestagung 2010 CY - Erfurt, Deutschland DA - 2010-05-10 PY - 2010 UR - http://www.ndt.net/article/dgzfp2010/Inhalt/di2a4.pdf SN - 978-3-940283-26-9 IS - DGZfP-BB 122 (Di.2.A.4) SP - 1 EP - 9 CY - Berlin AN - OPUS4-22528 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza A1 - da Silva, A. A1 - McEniry, E. A1 - Gault, B. A1 - Neugebauer, J. A1 - Raabe, D. T1 - Segregation-assisted spinodal and transient spinodal phase separation at grain boundaries N2 - Segregation to grain boundaries affects their cohesion, corrosion, and embrittlement and plays a critical role in heterogeneous nucleation. In order to quantitatively study segregation and low-dimensional phase separation at grain boundaries, here, we apply a density-based phase-field model. The current model describes the grain-boundary thermodynamic properties based on available bulk thermodynamic data, while the grain-boundary-density profile is obtained using atomistic simulations. To benchmark the performance of the model, Mn grain-boundary segregation in the Fe–Mn system is studied. 3D simulation results are compared against atom probe tomography measurements conducted for three alloy compositions. We show that a continuous increase in the alloy composition results in a discontinuous jump in the segregation isotherm. The jump corresponds to a spinodal Phase separation at grain boundary. For alloy compositions above the jump, we reveal an interfacial transient spinodal phase separation. The transient spinodal phenomenon opens opportunities for knowledge-based microstructure design through the chemical manipulation of grain boundaries. The proposed density-based model provides a powerful tool to study thermodynamics and kinetics of segregation and phase changes at grain boundaries. KW - Grain Boundary Spinodal KW - Densty-based Thermodynamics KW - Microstrucrue Design PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519497 DO - https://doi.org/10.1038/s41524-020-00456-7 VL - 6 IS - 1 SP - 191 PB - Nature AN - OPUS4-51949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mendive-Tapia, E. A1 - Neugebauer, J. A1 - Hickel, Tilmann T1 - Ab initio calculation of the magnetic Gibbs free energy of materials using magnetically constrained supercells N2 - We present a first-principles approach for the computation of the magnetic Gibbs free energy ofmaterials using magnetically constrained supercell calculations. Our approach is based on an adiabatic approximation of slowly varying local moment orientations, the so-called finite-temperature disordered local moment picture. It describes magnetic phase transitions and how electronic and/or magnetostructural mechanisms generate a discontinuous (first-order) character. We demonstrate that the statistical mechanics of the local moment orientations can be described by an affordable number of supercell calculations containing noncollinear magnetic configurations. The applicability of our approach is illustrated by firstly studying the ferromagnetic state in bcc Fe. We then investigate the temperature-dependent properties of a triangular antiferromagnetic state stabilizing in two antiperovskite systems Mn3AN (A = Ga, Ni). Our calculations provide the negative thermal expansion of These materials as well as the ab initio origin of the discontinuous character of the phase transitions, electronic and/or magnetostructural, in good agreement with experiment. KW - Ab initio KW - Thermodynamics KW - Magnetic alloys KW - Phase transformations PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543710 DO - https://doi.org/10.1103/PhysRevB.105.064425 SN - 2469-9969 VL - 105 IS - 6 SP - 1 EP - 6 PB - American Institute of Physics CY - Woodbury, NY AN - OPUS4-54371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sözen, H.I. A1 - Ener, S. A1 - Maccari, F. A1 - Fayyazi, B. A1 - Gutfleisch, O. A1 - Neugebauer, J. A1 - Hickel, Tilmann T1 - Combined ab initio and experimental screening of phase stabilities in the Ce-Fe-Ti-X system (X = 3d and 4d metals) N2 - One of the main challenges for the synthesis and application of the promising hard-magnetic compound CeFe11Ti is the formation of Laves phases that are detrimental for their thermodynamic stability and magnetic properties. In this paper, we present an ab initio based approach to modify the stability of these phases in the Ce-Fe-Ti system by additions of 3d and 4d elements. We combine highly accurate free-energy calculations with an efficient screening technique to determine the critical annealing temperature for the formation of Ce(Fe,X)11Ti. The central findings are the dominant role of the formation enthalpy at T = 0 K on chemical trends and the major relevance of partial chemical decompositions. Based on these insights, promising transition metals to promote the stability of the hard-magnetic phase, such as Zn and Tc, were predicted. The comparison with suction casting and reactive crucible melting experiments for Ce-Fe-Ti-X (X = Cu, Ga, Co, and Cr) highlights the relevance of additional phases and quaternary elements. KW - Density functional theory KW - Phase stability KW - Energy materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568850 DO - https://doi.org/10.1103/PhysRevMaterials.7.014410 SN - 2475-9953 VL - 7 SP - 1 EP - 15 AN - OPUS4-56885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sözen, H.I. A1 - Mendive-Tapia, E. A1 - Hickel, Tilmann A1 - Neugebauer, J. T1 - Ab initio investigations of point and complex defect structures in B2-FeAl N2 - We study single-site and two-site defect structures in B2-type Fe-Al alloys by means of density functional theory supercell calculations. The defect formation energies are calculated as functions of the chemical potential, which are used to obtain the dependence of the defect concentrations on Al content at different temperatures. We also examine the converging behavior of the formation energies with respect to the supercell size to study the corresponding limit of dilute defects. The effect of magnetism is investigated by considering nonmagnetic, ferromagnetic, and paramagnetic states, calculations for the latter showing that the magnitude of the local magnetic moments strongly impacts the defect formation energies. The methodological studies are used to provide explanations for the wide spread of defect formation energies reported by experiments and other theoretical investigations. Based on these insights, the stability of the B2-FeAl structure as a function of Al concentration is obtained and discussed. KW - Atomistic models KW - Defects KW - Thermodynamics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546956 DO - https://doi.org/10.1103/PhysRevMaterials.6.023603 SN - 2475-9953 VL - 6 IS - 2 SP - 1 EP - 11 PB - APS CY - College Park, MD AN - OPUS4-54695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tehranchi, Ali A1 - Hickel, Tilmann A1 - Neugebauer, J. T1 - Hydrogen enhanced dislocation cross-slip in polycrystalline nickel N2 - Hydrogen embrittlement (HE), degradation of the mechanical properties of metals due to the presence of hydrogen, is a persistent problem that has been attracting the attention of the material science community for about fifteen decades. Extensive experimental observations indicate the presence of nanovoids and the increase of free volume at the grain boundaries in hydrogen contaminated metals. This rate-dependent phenomenon motivates theoretical investigations of the underlying mechanisms. Here, a hydrogen enhanced cross-slip (HECS) mechanism in the close vicinity of the grain boundaries is demonstrated by direct molecular dynamics simulations and theoretical calculations. To this end, the interaction of screw dislocations with a variety of symmetric tilt grain boundaries in H-charged and H-free bicrystalline nickel is examined. The presence of segregated H atoms at the grain boundaries induces a stress field in their vicinity, and thus,- the barrier for cross-slip of screw dislocations considerably decreases. The enhanced cross-slip of dislocations facilitates the formation of jogs on bowedout dislocations. These jogs can form vacancies during the glide process. This mechanism of defect production shows nanoscale evidence of enhanced vacancy formation and subsequent increase in the free volume along the grain boundaries in the presence of H. KW - Hydrogen embrittlement KW - Dislocation KW - Grain boundary KW - Void formation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649858 DO - https://doi.org/10.1103/7l8f-3fbm SN - 2475-9953 VL - 9 IS - 12 SP - 1 EP - 16 PB - American Physical Society (APS) AN - OPUS4-64985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhu, L. A1 - Srinivasan, P. A1 - Gong, Y. A1 - Hickel, Tilmann A1 - Grabowski, B. A1 - Körmann, Fritz A1 - Neugebauer, J. T1 - Melting properties of the refractory metals V and W and the binary VW alloy fully from first principles N2 - We investigate the melting properties of the bcc refractory metals V and W, and the disordered equiatomic VW alloy from first principles. We show that thermal vibrations have a large impact on the electronic density of states (DOS) and thus considerably affect the electronic contribution to the free energy. For W, the impact of vibrations on the electronic free energy of solid and liquid is different. This difference substantially impacts the computed melting point and also triggers a large electronic heat capacity difference between solid and liquid. For V, although vibrations likewise affect the electronic free energy, the effect on the melting properties cancels out to a large degree. For the binary VW alloy we observe a similar impact as for W, but slightly weaker. The underlying physics is explained in terms of the electronic DOS of the solid and liquid phases. Based on our accurate first-principles results, we reveal critical limitations of the Sommerfeld approximation in predicting the electronic heat KW - Crystal melting KW - Thermodynamics KW - Metals KW - Ab initio molecular dynamics KW - Density functional theory PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618100 DO - https://doi.org/10.1103/PhysRevB.109.094110 SN - 2469-9950 VL - 109 IS - 9 SP - 1 EP - 18 PB - American Physical Society (APS) AN - OPUS4-61810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tehranchi, Ali A1 - Chakraborty, Poulami A1 - López Freixes, Martí A1 - McEniry, Eunan J. A1 - Gault, Baptiste A1 - Hickel, Tilmann A1 - Neugebauer, Jörg T1 - Tailoring negative pressure by crystal defects: Microcrack induced hydride formation in Al alloys N2 - Climate change motivates the search for non-carbon-emitting energy generation and storage solutions. Metal hydrides show promising characteristics for this purpose. They can be further stabilized by tailoring the negative pressure of microstructural and structural defects. Using systematic ab initio and atomistic simulations, we demonstrate that an enhancement in the formation of hydrides at the negatively pressurized tip region of the microcrack is feasible by increasing the mechanical tensile load on the specimen. The theoretical predictions have been used to reassess and interpret atom probe tomography experiments for a high-strength 7XXX-aluminium alloy that show a substantial enhancement of hydrogen concentration at structural defects near a stress-corrosion crack tip. These results contain important implications for enhancing the capability of metals as H-storage materials. KW - Physics and Astronomy (miscellaneous) KW - Hydrogen storage KW - Ab initio Simulation KW - Microcracks PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587878 DO - https://doi.org/10.1103/PhysRevMaterials.7.105401 SN - 2475-9953 VL - 7 IS - 10 SP - 105401-1 EP - 105401-12 PB - American Physical Society (APS) AN - OPUS4-58787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tehranchi, Ali A1 - Zhang, S. A1 - Zendegani, A. A1 - Hickel, Tilmann A1 - Neugebauer, J. A1 - Scheu, C. T1 - Metastable defect phase diagrams as roadmap to tailor chemically driven defect formation N2 - Thermodynamic bulk phase diagrams have become the roadmap used by researchers to identify alloy compositions and process conditions that result in novel materials with tailored properties. Recent experimental studies show that changes in the alloy composition can drive not only transitions in the bulk phases present in a material, but also in the concentration and type of defects they contain. Defect phase diagrams in combination with density functional theory provide a natural route to study these chemically driven defects. Our results reveal, however, that direct application of equilibrium bulk thermodynamics can fail to reproduce experimentally observed defect formation. Therefore, we extend the concept to metastable defect phase diagrams to account for kinetic limitations that prevent the system from reaching equilibrium. We apply this concept to successfully explain the formation of large concentrations of planar defects in supersaturated Fe-Nb solid solutions. We then utilize it to design suitable conditions for synthesis, which we subsequently realized experimentally, successfully validating the formation of the predicted defects in Mg-Al-Ca alloys. The concept offers new avenues for the design of materials performance by tailoring defect structures. KW - Metastable defect phase diagram KW - Ab initio thermodynamics KW - Chemical potential KW - Laves phases KW - Transmission electron microscopy PY - 2024 DO - https://doi.org/10.1016/j.actamat.2024.120145 SN - 1359-6454 VL - 277 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-61803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sreekala, L. A1 - Dey, P. A1 - Hickel, Tilmann A1 - Neugebauer, J. T1 - Unveiling nonmonotonic chemical trends in the solubility of H in complex Fe-Cr-Mn carbides by means of ab initio based approaches N2 - The microstructure of advanced high-strength steels often shows a sensitive dependence on alloying. For example, adding Cr to improve the corrosion resistance of medium-Mn steels also enhances the precipitation of carbides. The current study focuses on the behavior of H in such complex multicomponent carbides by employing different methodological strategies. We systematically analyze the impact of Cr, Mn, and Fe using density functional theory (DFT) for two prototype precipitate phases, M3C and M23C6, where M represents the metal sublattice. Our results show that the addition of these alloying elements yields strong nonmonotonic chemical trends for the H solubility. We identify magnetovolume effects as the origin for this behavior, which depend on the considered system, the sites occupied by H, and short- vs long-range interactions between H and the alloying elements. We further show that the H solubility is directly correlated with the occupation of its nearest-neighbor shells by Cr and Mn. Based on these insights, DFT data from H containing binary-metal carbides are used to design a ridge regression based model that predicts the solubility of H in the ternary-metal carbides (Fe-Cr-Mn-C). KW - Hydrogen KW - High-strength steel KW - Carbide KW - Ab initio KW - Complexity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542271 DO - https://doi.org/10.1103/PhysRevMaterials.6.014403 SN - 2475-9953 VL - 6 IS - 1 SP - 1 EP - 14 PB - American Physical Society (APS) CY - College Park, MD AN - OPUS4-54227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chakraborty, P. A1 - Mouton, I. A1 - Gault, B. A1 - Tehranchi, Ali A1 - Neugebauer, J. A1 - Hickel, Tilmann T1 - Effect of Sn on stacking fault energies in zirconium and its hydrides N2 - Hydrogen embrittlement in Zr-alloy fuel cladding is a primary safety concern for water-based nuclear reactors. Here we investigated the stabilization of planar defects within the forming hydrides by Sn, the primary alloying element of Zircaloy-4 used in the cladding. In order to explain the formation of hydrides and planar defects observed in our experiments, we performed atomic-scale ab initio calculations focusing on the solute interactions with generalized stacking faults in hcp 𝛼-Zr and fcc zirconium hydrides. Our calculations showed that an increase in Sn concentration leads to a stabilization of stacking faults in both the 𝛼-Zr and hydride phases. However, the solution enthalpy of Sn is lower in the 𝛼-Zr as compared to the other hydride phases, indicative of two competing processes of Sn depletion/enrichment at the Zr hydride/matrix interface. This is corroborated by experimental findings, where Sn is less soluble in hydrides and is mostly found trapped at interfaces and planar defects, indicative of stacking faults inside the hydride phases. Our systematic investigation enables us to understand the presence and distribution of solutes in the hydride phases, which provides a deeper insight into the microstructural evolution of such alloy's properties during its service lifetime. KW - Defects KW - First-principles calculations KW - Interface and surface thermodynamics KW - Microstructure KW - Hydrides KW - Structural properties PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618044 DO - https://doi.org/10.1103/PhysRevMaterials.8.033605 SN - 2475-9953 VL - 8 IS - 3 SP - 1 EP - 9 PB - APS AN - OPUS4-61804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mai, H. L. A1 - Cui, X.-Y, A1 - Hickel, Tilmann A1 - Neugebauer, J. A1 - Ringer, S. P. T1 - A high-throughput ab initio study of elemental segregation and cohesion at ferritic-iron grain boundaries N2 - Segregation of alloying elements and impurities at grain boundaries (GBs) critically influences material behaviour by affecting cohesion. In this study, we present an ab initio high-throughput evaluation of segregation energies and cohesive effects for all elements up to Z=92 in the periodic table (Z = 1–92, H–U) across the substitutional sites in six model ferritic iron GBs using density functional theory (DFT). From these data, we construct comprehensive elemental maps for solute segregation tendencies and cohesion at GBs, providing guidance for segregation engineering. We systematically assess the cohesive effects of different elements in all segregating positions along multiple fracture paths with a quantum-chemistry bond-order method as well as a modified Rice–Thomson–Wang theory of interfacial cohesion. The effects of segregants on the cohesion of GBs are shown to vary drastically as a function of site character, and hence their induced cohesive effects must be considered as a thermodynamic average over the spectral energy distribution. Thus, models that overlook these aspects may fail to accurately predict the impacts of varying alloying concentrations, thermal processing conditions, or GB types. The insights presented here, along with our accompanying dataset, are expected to advance our understanding of GB segregation in steels and other materials. KW - Defects PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638397 DO - https://doi.org/10.1016/j.actamat.2025.121288 SN - 1359-6454 VL - 297 SP - 1 EP - 16 PB - Elsevier Inc. AN - OPUS4-63839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chang, Y.-J. A1 - Sproesser, G. A1 - Neugebauer, S. A1 - Wolf, K. A1 - Scheumann, R. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Finkbeiner, M. T1 - Environmental and social life cycle assessment of welding technologies N2 - Life Cycle Assessment (LCA) and Social Life Cycle Assessment (SLCA) are applied in evaluating possible social and environmental impacts of the state-of-art welding technologies, such as Manual Metal Arc Welding (MMAW), Manual Gas Metal Arc Welding (GMAW), Automatic GMAW and Automatic Laser-Arc Hybrid Welding (LAHW). The LCA results indicate that for 1 meter weld seam, MMAW consumes the largest amount of resources (like filler material and coating on electrodes) and energy, which contributes to comparatively higher environmental impacts in global warming potential, acidification, photochemical ozone creation potential and eutrophication than other chosen processes. With regard to social aspects, the health issues and fair salary are under survey to compare the relative potential risk on human health caused by fumes in different welding technologies, and to indicate the sufficiency of current salary of welders in Germany. The results reflect that the wage status of welders is still fair and sufficient. The manual processes bring much higher potential risk of welders’ health than the automatic processes, especially MMAW. KW - Fair salary KW - Human health KW - Life Cycle Assessment (LCA) KW - Social Life Cycle Assessment (SLCA) KW - Welding PY - 2015 DO - https://doi.org/10.1016/j.procir.2014.07.084 SN - 2212-8271 VL - 26 SP - 293 EP - 298 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-33036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -