TY - JOUR A1 - Herrmann, K. A1 - Pech May, Nelson Wilbur A1 - Retsch, M. T1 - Photoacoustic thermal characterization of low thermal diffusivity thin films N2 - The photoacoustic measurement technique is a powerful yet underrepresented method to characterize the thermal transport properties of thin films. For the case of isotropic low thermal diffusivity samples, such as glasses or polymers, we demonstrate a general approach to extract the thermal conductivity with a high degree of significance. We discuss in particular the influence of thermal effusivity, thermal diffusivity, and sample layer thickness on the significance and accuracy of this measurement technique. These fundamental thermal properties guide sample and substrate selection to allow for a feasible thermal transport characterization. Furthermore, our data evaluation allows us to directly extract the thermal conductivity from this transient technique, without separate determination of the volumetric heat capacity, when appropriate boundary conditions are fulfilled. Using silica, poly(methyl methacrylate) (PMMA) thin films, and various substrates (quartz, steel, and silicon), we verify the quantitative correctness of our analytical approach. KW - Thermal conductivity KW - Photoacoustic characterization KW - Thin film characterization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528743 DO - https://doi.org/10.1016/j.pacs.2021.100246 SN - 2213-5979 VL - 22 SP - 100246 PB - Elsevier AN - OPUS4-52874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Aguilar, A. A1 - Forero, I. A1 - Alvarado-Gil, J. T1 - Photothermal characterization of polyester composites loaded with parallelly arranged graphite rods N2 - One of the biggest challenges in the measurement of thermal properties is to measure inhomogeneous materials This work focuses on measuring the thermal properties of cylindrical polyester resin composite materials loaded with graphite rods oriented in the direction of the resin thickness, varying the graphite concentrations starting from zero to 8 75 of volumetric fraction and changing the distribution of graphite rods inside the polyester matrix T2 - International Conference in Photoacoustics and Photothermal Phenomena (ICPPP21) CY - Bled, Slovenia DA - 19.06.2022 KW - Heat diffusion KW - Heterogeneous materials PY - 2022 AN - OPUS4-55384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pech May, Nelson Wilbur A1 - Lauster, T. A1 - Retsch, M. T1 - Design of Multimodal Absorption in the Mid-IR: A Metal Dielectric Metal Approach N2 - Specific control on the mid-infrared (mid-IR) Emission properties is attracting increasing attention for thermal camouflage and passive cooling applications. Metal−dielectric−metal (MDM) structures are well known to support strong magnetic polariton resonances in the optical and near-infrared range. We extend the current understanding of such an MDM structure by specifically designing Au disc arrays on top of ZnS−Au−Si substrates and pushing their resonances to the mid-IR regime. Therefore, we combine fabrication via lift-off photolithography with the finite element method and an inductance−capacitance model. With this combination of techniques, we demonstrate that the magnetic polariton resonance of the first order strongly depends on the individual disc diameter. Furthermore, the fabrication of multiple discs within one unit cell allows a linear combination of the fundamental resonances to conceive broadband absorptance. Quite importantly, even in mixed resonator cases, the absorptance spectra can be fully described by a superposition of the individual disc properties. Our contribution provides rational guidance to deterministically design mid-IR emitting materials with specific narrow- or broadband properties. KW - Mid-IR absorption KW - Thermal emission PY - 2021 DO - https://doi.org/10.1021/acsami.0c18160 VL - 13 IS - 1 SP - 1921 EP - 1929 PB - ACS Publications AN - OPUS4-52070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Forero-Sandoval, I. A1 - Cervantes-Alvarez, F. A1 - Ramirez-Rincon, J. A1 - Macias, J. A1 - Pech May, Nelson Wilbur A1 - Ordonez-Miranda, J. A1 - Alvarado-Gil, J. T1 - Percolation Threshold of the Thermal, Electrical and Optical Properties of Carbonyl-Iron Microcomposites N2 - Composites made up of microparticles embedded in a polymeric matrix have attracted increasing attention due to the possibility of tailoring their physical properties by adding the adequate quantity of fillers. As the concentration of these fillers increases, their connectivity changes drastically at a given threshold and therefore the electrical, thermal and optical properties of these composites are expected to exhibit a percolation effect. In this work, the thermal and electrical conductivities along with the emissivity of Composites composed of carbonyl-iron microparticles randomly distributed in a polyester resin matrix are measured, for volume fractions ranging from 0 to 0.55. It is shown that both the thermal and electrical conductivities increase with the particles’ concentration, such that their percolation threshold appears at volume fractions of 0.46 and 0.38, respectively. The emissivity, on the other hand, decreases as the fillers’ concentration increases, such that it exhibits a substantial decay at a volume fraction of 0.41. The percolation threshold of the emissivity is thus higher than that of the thermal conductivity, but lower than the electrical conductivity one. This dispersion on the percolation concentration is justified by the different physical mechanisms required to activate the electrical, thermal, and optical responses of the considered composites. The obtained results thus show that the percolation phenomenon can efficiently be used to enhance or reduce the physical properties of particulate composites. KW - Thermal conductivity KW - Emissivity KW - Thermal percolation threshold PY - 2021 DO - https://doi.org/10.1007/s10443-021-09869-z VL - 28 IS - 2 SP - 447 EP - 463 PB - Springer AN - OPUS4-52355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tran, T. A1 - Kodisch, C. A1 - Schöttle, M. A1 - Pech May, Nelson Wilbur A1 - Retsch, M. T1 - Characterizing the thermal diffusivity of single, micrometer-sized fibers via high-resolution lock-in thermography N2 - Many advanced materials consist of fibers. They are used as nonwovens, fabrics, or in composite materials. Characterization of individual fibers allows us to predict resulting material properties. We present a measurement setup and analysis software to characterize individual, micrometer-sized fibers fast and reliably. The setup is based on the lock-in thermography principle. Thermal diffusivity values of seven reference samples agree very well with previously reported values. We use our setup to investigate critical measurement parameters like excitation frequency, excitation power, pixel size, and fiber orientation. Our results show that fibers with subpixel diameters can be measured even if they are not aligned. However, special care has to be taken to choose an adequate excitation power. Measurements at high intensities can underestimate thermal diffusivity even though the raw data looks reasonable. By automatically measuring at different excitation powers, our setup solves this issue. KW - Surfaces, coatings and films KW - Physical and theoretical chemistry KW - General energy KW - Electronic, optical and magnetic materials PY - 2022 DO - https://doi.org/10.1021/acs.jpcc.2c04254 SN - 1932-7455 VL - 126 IS - 32 SP - 14003 EP - 14010 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-58128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pech May, Nelson Wilbur A1 - Tabasco-Novelo, Carolina A1 - Quintana, Patricia A1 - Rodriguez-Gattorno, Geonel A1 - Alvarado-Gil, Juan J. T1 - Evidence of a Thermal Diffusivity Gap in Sintered Li–Co–Sb–O Solid Solutions N2 - In this work, the thermal properties of ternary Li₃ₓCo₇₋₄ₓSb₂₊ₓO₁₂ solid solutions are studied for different concentrations in the range 0 ≤ x ≤ 0.7. Samples are elaborated at four different sintering temperatures: 1100, 1150, 1200 and 1250 °C. The effect of increasing the content of Li⁺ and Sb⁵⁺, accompanied by the reduction of Co²⁺, on the thermal properties is studied. It is shown that a thermal diffusivity gap, which is more pronounced for low values of x, can be triggered at a certain threshold sintering temperature (around 1150 °C in this study). This effect is explained by the increase of contact area between adjacent grains. Nevertheless, this effect is found to be less pronounced in the thermal conductivity. Moreover, a new framework for heat diffusion in solids is presented that establishes that both the heat flux and the thermal energy (or heat) satisfy a diffusion equation and therefore highlights the importance of thermal diffusivity in transient heat conduction phenomena. KW - General Chemical Engineering KW - General Chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593248 DO - https://doi.org/10.1021/acsomega.2c07557 SN - 2470-1343 VL - 8 IS - 8 SP - 7808 EP - 7815 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-59324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien A1 - Hassenstein, Christian A1 - Thiel, Erik A1 - Pech May, Nelson Wilbur T1 - Using spatial and temporal shaping of laser-induced diffuse thermal wave fields in thermography N2 - The diffuse nature of thermal waves is a fun-damental limitation in thermographic nonde-structive testing. In our studies we investigated different approaches by shaping the thermal wave fields which result from heating. We have used high-power laser sources to heat metallic samples. Using these spatial and temporal shaping techniques leads to a higher detection sensitivity in our measurements with the infra-red camera. In this contribution we show our implementation of shaping laser-induced diffuse thermal wave fields and the effect on the defect reconstruction quality. T2 - SMSI 2020 Conference CY - Online meeting DA - 22.06.2020 KW - Thermal wave KW - Diffusion KW - High-power laser KW - Thermography KW - Spatiotemporal shaping PY - 2020 DO - https://doi.org/10.5162/SMSI2020/C5.1 SP - 179 EP - 180 AN - OPUS4-50897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Paul, A. A1 - Ziegler, Mathias T1 - Pulse-compression laser thermography using a modified Barker code: Enhanced detection of subsurface defects N2 - Pulse-compression thermography is an emerging technique that has shown versatility by combination of pulsed and lock-in thermography. Accordingly, several aspects of this technique are still unexplored, and some others not fully developed yet. Barker codes were widely used in radar applications due to their simplicity and their optimum autocorrelation function. Nevertheless, applications were limited by the amplitude of the sidelobes present in the autocorrelation function and therefore, several filters have been developed which aim to reduce the sidelobes. However, the filters usually depend on empirical parameters which must be determined for each application. A better alternative would improve the applicability of the Barker codes. In this work, we further develop the pulse-compression thermography technique by introducing a 13-bit modified Barker code (mBC): This allows to drastically reduce the sidelobes characteristic of the 13-bit Barker code (BC). Consequently, the thermographic impulse response, obtained by cross-correlation, is almost free of such sidelobes. Deeper defects become easier to detect in comparison with using a 13-bit Barker code. Numerical simulations using the finite element method are used for comparison and experimental measurements are performed in a sample of steel grade St 37 with machined notches of three different depths: 2 mm, 4 mm and 6 mm. T2 - SPIE Defense + Commercial Sensing 2021 CY - Online meeting DA - 13.04.2021 KW - Pulse-compression laser thermography KW - Barker codes KW - Non-destructive testing PY - 2021 DO - https://doi.org/10.1117/12.2586078 SN - 0277-786X VL - 11743 SP - 1 EP - 11 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-53247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Ziegler, Mathias T1 - Surface breaking crack detection algorithm for flying spot and line thermography based on the Canny approach N2 - In this work we introduce an algorithm based on the well-known Canny approach for effectual crack detection in thermographic films obtained using flying spot thermography (FST) or flying line thermography (FLT). The proposed algorithm performs faster than another algorithm, for crack detection, based on the application of two Sobel filters (one in x and another one in y directions). For FLT it is shown that processing 10-25 % of the thermograms of a thermographic film required to scan a whole sample is enough to obtain good results. In contrast, using the Sobel filter approach requires the processing of twice the thermographic film length. Experimental measurements are performed on a metallic component of complex shape which contains real defects, that is, surface breaking cracks due to industrial use. The specimen is tested using flying line thermography. Three different scanning speeds are tested: 10, 30 and 60 mms-1 with laser powers of 50, 60 and 120 W respectively. The sample and an infrared camera are aligned and fixed on a motorized linear stage. The diode laser LDM500 (500 W max power) is fixed on an optical bench separately from the linear stage. The results obtained with the proposed algorithm are additionally compared with a previously established algorithm for flying spot thermography based on the Sobel filter. It is shown that the proposed algorithm based on the Canny approach, can be used in automated systems for thermographic non-destructive testing. T2 - SPIE Future Sensing Technologies 2021 CY - Online meeting DA - 14.11.2021 KW - Flying line thermography KW - Flying spot thermography KW - Canny approach KW - automated thermographic nondestructive testing PY - 2021 DO - https://doi.org/10.1117/12.2603913 SP - 119140M-1 EP - 119140M-6 AN - OPUS4-53961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Paul, A. A1 - Ziegler, Mathias T1 - Pulse-compression laser thermography using a modified Barker code: Enhanced detection of subsurface defects N2 - Pulse-compression thermography is an emerging technique that has shown versatility by combination of pulsed and lock-in thermography. Accordingly, several aspects of this technique are still unexplored, and some others not fully developed yet. Barker codes were widely used in radar applications due to their simplicity and their optimum autocorrelation function. Nevertheless, applications were limited by the amplitude of the sidelobes present in the autocorrelation function and therefore, several filters have been developed which aim to reduce the sidelobes. However, the filters usually depend on empirical parameters which must be determined for each application. A better alternative would improve the applicability of the Barker codes. In this work, we further develop the pulse-compression thermography technique by introducing a 13-bit modified Barker code (mBC): This allows to drastically reduce the sidelobes characteristic of the 13-bit Barker code (BC). Consequently, the thermographic impulse response, obtained by cross-correlation, is almost free of such sidelobes. Deeper defects become easier to detect in comparison with using a 13-bit Barker code. Numerical simulations using the finite element method are used for comparison and experimental measurements are performed in a sample of steel grade St 37 with machined notches of three different depths: 2 mm, 4 mm and 6 mm. T2 - SPIE Defense + Commercial Sensing 2021 CY - Online meeting DA - 13.04.2021 KW - Pulse-compression laser thermography KW - Barker codes KW - Non-destructive testing PY - 2021 AN - OPUS4-53249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -