TY - CONF A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Johansson, G. A1 - Zandi, K. A1 - Portal, Natalie Williams A1 - Müller, U. T1 - Numerical modelling of UHPC and TRC sandwich elements for building envelopes N2 - ln this paper a modelling approach is presented to reproduce the mechanical behaviour of sandwich panels via finite element analysis. Two types of panels were investigated in this scope of work. The first sandwich element was a textile reinforced concrete (TRC) panel with cellular lightweight concrete insulation and the second configuration was an ultra-high performances concrete (UHPC) panel with aerated autoclaved concrete insulation. The goal was to obtain a reliable numerical strategy that represents a reasonable compromise in terms of sufficient accuracy of the element characteristics and the computational costs. The results show the possibility of describing the composite action in a full sandwich panel. The achieved modelling approach will later be used for the optimization of TRC and UHPC panels in terms of minimizing the thickness, identifying the number and location of connectors, as well as evaluating varying anchorage Systems. T2 - IABSE conference - Structural engineering: Providing solutions to global challenges CY - Geneva, Switzerland DA - 23.09.2015 KW - Sandwich elements KW - Ultra-high performance concrete (UHPC) KW - Textile reinforced concrete (TRC) KW - Autoclaved aerated concrete (AAC) KW - Cellular lightweight concrete (CLC) KW - Finite element analysis (FEA) PY - 2015 SN - 978-3-85748-140-6 SP - 195 EP - 203 AN - OPUS4-34552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sie, M. A1 - Susca, Tiziana A1 - Portal, Natalie Williams A1 - During, O. A1 - Fontana, Patrick A1 - Sjöström, C. ED - de Schutter, G. ED - de Belie, N. ED - Janssens, A. ED - van den Bossche, N. T1 - Influence of life span prediction on building component's LCA performance N2 - The life span of a building product is a key Parameter when it comes to Life Cycle Assessment (LCA) performance. Nevertheless, many uncertainties affect this parameter due to a lack of long-term performance data. The sensitivity of the LCA outcomes to this parameter has been studied within the framework of the FP7 project H-House (Healthier Life with Eco-innovative Components for Housing Constructions) funded by the European Commission. The paper Features two comparative studies conducted within the scope of this project: one for new construction and another for renovation. An innovative precast sandwich panel made of Textile Reinforced Concrete (TRC) and Foamed Concrete (FC), used for external walls in new construction, is compared with a steel reinforced concrete (SRC) wall of the same thermal resistance. For renovation, a novel halfsandwich panel made of Ultra-High-Performance-Concrete (UHPC) and Autoclaved Aerated Concrete (AAC) is compared with cladding having the same thermal performance. The Evaluation was conducted using a multi-criteria basis according to the LCA methodology (ISO 14040- 44). In each case, an identical life span for both scenarios leads to the fact that H-House components have a better environmental performance. The ISO 15686 and ist relevant parts have been considered for the estimation of the service life span. The sensitivity analysis shows the link between the impact savings of the innovative walls and the life span of the walls and their components. In particular, it was found that since both scenarios need to fulfil the same service during an identical reference period, and since some maintenance and replacement of materials are necessary over time for standard Solutions compared to the innovative ones, the chosen life span of the components plays a role of utmost importance. The sensitivity analysis discloses the effect of the assumptions on these aspects. T2 - XIV DBMC - 14th International Conference on Durability of Building Materials and Components CY - Ghent, Belgium DA - 29.05.2017 KW - LCA KW - Life span KW - TRC KW - UHPC KW - ISO 15686 PY - 2017 SN - 978-2-35158-159-9 VL - PRO 107 SP - 371 EP - 372 PB - RILEM Publications S.A.R.L. AN - OPUS4-40999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -