TY - CONF A1 - Cobet, C. A1 - Wollschläger, Nicole A1 - Esser, N. A1 - Richter, W. A1 - Baudach, Steffen A1 - Beck, Uwe A1 - Männ, Marion A1 - Brunn, S. A1 - Gruska, B. A1 - Richter, U. T1 - VUV-XUV-Ellipsometrie mit Synchrotronstrahlung T2 - 2. Workshop Ellipsometrie T2 - 2. Workshop Ellipsometrie CY - Berlin, Deutschland DA - 2002-02-18 PY - 2002 AN - OPUS4-2282 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yilmaz, M. A1 - Wollschläger, Nicole A1 - Esfahani, M. N. A1 - Österle, Werner A1 - Leblebici, Y. A1 - Alaca, B. E. T1 - Superplastic behavior of silica nanowires obtained by direct patterning of silsesquioxane-based precursors JF - Nanotechnology N2 - Silica nanowires spanning 10 μm-deep trenches are fabricated from different types of silsesquioxane-based precursors by direct e-beam patterning on silicon followed by release through deep reactive ion etching. Nanowire aspect ratios as large as 150 are achieved with a critical dimension of about 50 nm and nearly rectangular cross-sections. In situ bending tests are carried out inside a scanning electron microscope, where the etch depth of 10 mm provides sufficient space for deformation. Silica NWs are indeed observed to exhibit superplastic behavior without fracture with deflections reaching the full etch depth, about two orders of magnitude larger than the nanowire thickness. A large-deformation elastic bending model is utilized for predicting the deviation from the elastic behavior. The results of forty different tests indicate a critical stress level of 0.1–0.4 GPa for the onset of plasticity. The study hints at the possibility of fabricating silica nanowires in a monolithic Fashion through direct e-beam patterning of silsesquioxane-based resins. The fabrication technology is compatible with semiconductor manufacturing and provides silica nanowires with a very good structural integrity. KW - Silica nanowires KW - HSQ KW - Superplasticity KW - In situ bending tests PY - 2017 DO - https://doi.org/10.1088/1361-6528/aa5b80 SN - 0957-4484 SN - 1361-6528 VL - 28 IS - 11 SP - Article 115302, 1 EP - 10 AN - OPUS4-39166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wollschläger, N. A1 - Nützmann, Kathrin T1 - What happens during S-corrosion in Fe13Cr in the early stage? N2 - Ferritic alloys containing Cr form Cr5S6 precipitates along grain boundaries in hot SO2 environment. Grain boundary precipitates may influence the steel’s mechanical behavior. Cr5S6 precipitates were reconstructed three-dimensionally using FIB tomography analysis to determine the volume, number, and penetration depth. The volume growth of Cr5S6 precipitates increased only for the initial aging time of 3 h but became constant after 6 h. The number of precipitates increased linearly. T2 - Meeting on Focused Ion Beams in Berlin - FIBiB2017 CY - Berlin, HZB Wannsee Campus, Germany DA - 06.11.2017 KW - Grain boundary corrosion KW - 3D tomography KW - Sulfidation PY - 2017 AN - OPUS4-45061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chandra, K. A1 - Dörfel, Ilona A1 - Wollschläger, N. A1 - Kranzmann, Axel T1 - Microstructural investigation using advanced TEM techniques of inner ocide layers formed on T92 steel in oxyfuel environment JF - Corrosion Science N2 - T92 steel was oxidized at 650 °C for 1000 h in dry and wet oxyfuel gases. The microstructure of inner oxide layer was investigated using scanning transmission electron microscopy and energy dispersive spectroscopy on thin lamellas of oxide cross-sections. The oxides were composed of fine equiaxed grains and separated into Fe-rich and Cr-rich regions. Fe-rich regions were wustite and iron sulphide while Cr-rich regions consisted of Fe-Cr spinel with different stoichiometries. Precipitates of (W,Mo)-rich oxides were formed within the oxide scale and beneath the oxide/alloy interface. Often iron sulphide and (W,Mo)-rich oxide were surrounded by Cr-rich spinel. KW - Steel KW - STEM KW - High temperature corrosion KW - Oxidation KW - Internal oxidation PY - 2019 DO - https://doi.org/10.1016/j.corsci.2018.12.008 SN - 0010-938X SN - 1879-0496 VL - 148 SP - 94 EP - 109 PB - Elsevier AN - OPUS4-47423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -