TY - JOUR A1 - Kuroiwa, T. A1 - Zhu, Y. A1 - Inagaki, K. A1 - Long, S. A1 - Christopher, S. A1 - Puelles, M. A1 - Porinsky, M. A1 - Hatamleh, N. A1 - Murby, J. A1 - Merrick, J. A1 - White, I. A1 - Saxby, D. A1 - Caciano de Sena, R. A1 - Dominguez de Almeida, M. A1 - Vogl, Jochen A1 - Phukphatthanachai, Pranee A1 - Fung, W.-H. A1 - Yau, H.-P. A1 - Okumu, T. O. A1 - Kang'iri, J. N. A1 - Tellez, J. A. S. A1 - Campos, E. Z. A1 - Galvan, E. C. A1 - Kaewkhomdee, N. A1 - Taebunpakul, S. A1 - Thiengmanee, U. A1 - Yafa, C. A1 - Tokman, N. A1 - Tunc, M. A1 - Can, S. Z. T1 - Report of the CCQM-K123: trace elements in biodiesel fuel JF - Metrologia N2 - The CCQM-K123 key comparison was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of sodium, calcium, potassium, magnesium phosphorous and sulfur in biodiesel fuel (BDF). The National Metrology Institute of Japan (NMIJ) and National Institute of Standards and Technology (NIST) acted as the coordinating laboratories. Results were submitted by 11 NMIs and DIs. The participants used different measurement methods, though most of them used inductively coupled plasma-mass spectrometry (ICP-MS), isotope dilution technique with ICP-MS and inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave acid digestion. The material was quite challenging and a number of questions were raised at the IAWG meeting. Concerning S, the variation in S results between participants, particularly those using IDMS methods was discussed at the IAWG meeting. BAM, NIST and NMIJ reviewed their experimental conditions, results and/or uncertainty calculations for IDMS. According to the additional evaluation and investigation, the variances between the revised results became smaller than the original one, the revised results were overlapping between IDMS measurements of S content at the k=2 level. It is not possible to calculate a KCRV with values being modified after submission. It was concluded that this KC does not support S measurements. Accounting for relative expanded uncertainty, comparability of measurement results for each of Na, Ca, K, Mg and P was successfully demonstrated by the participating NMIs or DIs. It is expected that sodium, calcium, potassium, magnesium and phosphorus at mass fractions greater than approximately 0.1 mg/kg, 0.1 mg/kg, 0.05 mg/kg, 0.05 mg/kg and 0.1 mg/kg respectively in biodiesel fuel and similar matrices (fuels and oils etc.) can be determined by each participant using the same technique(s) employed for this key comparison to achieve similar uncertainties mentioned in the present report. Furthermore, the results of this key comparison can be utilized along with the IAWG core capability approach. KW - Biodiesel KW - Fuel KW - Sulphur KW - Reference measurement PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-393941 UR - http://iopscience.iop.org/article/10.1088/0026-1394/54/1A/08008/meta DO - https://doi.org/10.1088/0026-1394/54/1A/08008 SN - 0026-1394 SN - 1681-7575 VL - 54 SP - Tech. Suppl. 2017, 08008, 1 EP - 47 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-39394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Daireaux, A. A1 - Wielgosz, R. A1 - Davies, S. A1 - Kang, M. A1 - Ting, H. A1 - Philipp, Rosemarie A1 - Malz, Frank A1 - Shimizu, Y. A1 - Frias, E. A1 - Pérez, M. A1 - Apps, P. A1 - Fernandes-Whaley, M. A1 - De Vos, B. A1 - Wiagnon, K. A1 - Ruangrittinon, N. A1 - Wood, S. A1 - Duewer, D.L. A1 - Schantz, M.M. A1 - Bedner, M. A1 - Hancock, D. A1 - Esker, J. T1 - An international comparison of mass fraction purity assignment of theophylline: CCQM pilot study CCQM-P20.e (Theophylline) JF - Metrologia PY - 2009 DO - https://doi.org/10.1088/0026-1394/46/1A/08019 SN - 0026-1394 SN - 1681-7575 VL - 46 IS - 08019 SP - 1 EP - 37 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-20030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Kang, N. A1 - Wang, D.-Y. A1 - Wurm, Andreas A1 - Schick, C. A1 - Schönhals, Andreas T1 - Crystallization behavior of nanocomposites based on poly(L-lactide) and MgAl layered double hydroxides - Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller JF - Polymer N2 - Semicrystalline polymers have to be described by a three phase model consisting of a mobile amorphous (MAF), a crystalline (CF), and a rigid amorphous fraction (RAF). For nanocomposites based on a semicrystalline polymer the RAF is due to both the crystallites (RAFcrystal) and the filler (RAFfiller). Polymer nanocomposite based on poly(L-lactide) and MgAl layered double hydroxide nanofiller were prepared. Due to the low crystallization rate of PLA ist crystallization can be suppressed by a high enough cooling rate, and the RAF is due only to the nanofiller. The MAF, CF, and RAF were estimated by Temperature Modulated DSC. For the first time CF, MAF, RAFcrystal, and RAFfiller could be estimated. It was found, that RAFfiller increases linearly with the concentration of the nanofiller for this system. Furthermore, RAFcrystal is only slightly influenced by the presence of the nanofiller. KW - Polymer based nanocomposites PY - 2017 DO - https://doi.org/10.1016/j.polymer.2016.11.065 SN - 0032-3861 SN - 1873-2291 VL - 108 SP - 257 EP - 264 PB - Elesevier AN - OPUS4-39052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kang, Y. A1 - Nack, L. M. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Quantitative considerations about the size dependence of cellular entry and excretion of colloidal nanoparticles for different cell types JF - ChemTexts N2 - Most studies about the interaction of nanoparticles (NPs) with cells have focused on how the physicochemical properties of NPs will influence their uptake by cells. However, much less is known about their potential excretion from cells. However, to control and manipulate the number of NPs in a cell, both cellular uptake and excretion must be studied quantitatively. Monitoring the intracellular and extracellular amount of NPs over time (after residual noninternalized NPs have been removed) enables one to disentangle the influences of cell proliferation and exocytosis, the major pathways for the reduction of NPs per cell. Proliferation depends on the type of cells, while exocytosis depends in addition on properties of the NPs, such as their size. Examples are given herein on the role of these two different processes for different cells and NPs. KW - Cell proliferation KW - Exocytosis KW - Gold nanoparticles KW - Quantum dots KW - Fluorescence KW - Uptake studies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543476 DO - https://doi.org/10.1007/s40828-021-00159-6 SN - 2199-3793 VL - 8 IS - 1 SP - 1 EP - 8 PB - Springer CY - Berlin AN - OPUS4-54347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Purohit, Purv A1 - Kang, N. A1 - Wang, D.-Y. A1 - Falkenhagen, Jana A1 - Emmerling, Franziska A1 - Thünemann, Andreas A1 - Schönhals, Andreas T1 - Structure-property relationships of nanocomposites based on polylactide and MgAl layered double hydroxides JF - European polymer journal N2 - Nanocomposites based on poly(ʟ-lactide) (PLA) and organically modified MgAl Layered Double Hydroxides (MgAl-LDH) were prepared by melt blending and investigated by a combination of Differential Scanning Calorimetry (DSC), Small- and Wide-Angle X-ray Scattering (SAXS, WAXS), and dielectric spectroscopy (BDS). Scanning microfocus SAXS investigations show that the MgAl-LDH is homogeneously distributed in the matrix as stacks of 6 layers and/or partly exfoliated layers. DSC and WAXS show that the degree of crystallinity decreases linearly with the content of LDH. The extrapolation of the dependencies (DSC and WAXS) to zero estimates a limiting concentration of LDH CCri of ca. 21 wt% where the crystallization of PLA is completely suppressed by the nanofiller. The dielectric behavior of neat PLA show two relaxation regions, a β-relaxation at low temperatures related to localized fluctuations and the α-relaxation at higher temperatures due to the dynamic glass transition. The dielectric spectra of the nanocomposites show several additional relaxation processes compared to neat PLA which are discussed in detail. For the nanocomposites around 260 K (ƒ = 1 kHz) an additional process is observed which intensity increases with increasing concentration of LDH. This process is mainly attributed to the exchanged dodecylbenzene sulfonate (SDBS) molecules which are adsorbed at the LDH layers and form a mixed phase with the polymer close to the layers and stacks. An analysis of this process provides information about the molecular dynamics in the interfacial region between the LDH layers and the PLA matrix which reveal glassy dynamics in this region. In the temperature range around 310 K (ƒ = 1 kHz) a further process is observed. Its relaxation rate has an unusual saddle-like temperature dependence. It was assigned to rotational fluctuations of water molecules in a nanoporous environment provided by the LDH filler. Above the glass transition temperature a further process is observed at temperatures above. It is related to Maxwell/Wagner/Sillars polarization due to the blocking of charges at the nanofiller. KW - Polymer based nanocomposites KW - Polylactide KW - Layered double hydroxides KW - Dielectric spectroscopy PY - 2015 DO - https://doi.org/10.1016/j.eurpolymj.2015.05.008 SN - 0014-3057 SN - 1873-1945 VL - 68 SP - 338 EP - 354 PB - Elsevier CY - Oxford AN - OPUS4-33257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kang, Y. A1 - Nack, L. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Correction to: Quantitative considerations about the size dependency for cellular entry and excretion of colloidal nanoparticles for different cell types T2 - ChemTexts N2 - We regret to inform that the labels "NPs which remain in endosomes/lysosomes" and "exocytosed NPs" had been erroneously swapped in the sketch on the right side in Figure 2. The corrected Fig. 2 is displayed below. WJP apologizes for this error. KW - Cell proliferation KW - Exocytosis KW - Gold nanoparticles KW - Quantum dots KW - Uptake studies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554519 DO - https://doi.org/10.1007/s40828-022-00168-z VL - 8 IS - 17 SP - 1 EP - 2 PB - Springer CY - Berlin AN - OPUS4-55451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Szymoniak, Paulina A1 - Kang, N.-J. A1 - Wang, D-Y A1 - Wurm, A. A1 - Schick, C. A1 - Schönhals, Andreas T1 - Influence of interfaces on the crystallization behavior and the rigid amorphous phase of poly(l-lactide)-based nanocomposites with different layered doubled hydroxides as nanofiller JF - Polymer N2 - Based on the three-phase model of semi-crystalline polymers, we determined all phase fractions of the NiAl-LDH/PLLA nanocomposites in dependence on the concentration of the nanofiller. Moreover, the rigid amorphous fraction (RAF) was separated into the RAFcrystal and the RAFfiller unbiasedly. A detailed comparison to the related nanocomposite system MgAl-LDH/PLLA was made considering that Mg and Ni have different atomic weights. As a first result is was found that NiAl-LDH/PLLA displays a higher crystallization rate compared to MgAl-LDH/PLLA, which is related to the different morphologies of the two nanocomposite systems. For both systems RAFcrystal increases with increasing concentration of the nanofiller. This means in the case of the nanocomposite not each crystal produces the same amount of RAF, as often assumed. Also, RAFfiller increases with the concentration for both systems but in a different way. This is discussed considering again the different morphologies of both nanocomposites. KW - Polymer-based nanocomposites KW - Temperature modulated differential scanning calorimetry PY - 2019 DO - https://doi.org/10.1016/j.polymer.2019.121929 VL - 184 SP - 121929 PB - Elesevier Ltd. AN - OPUS4-49557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -