TY - JOUR A1 - Trimpin, Sarah A1 - Yenchick, Frank S. A1 - Lee, Chuping A1 - Hoang, Khoa A1 - Pophristic, Milan A1 - Karki, Santosh A1 - Marshall, Darrell D. A1 - Lu, I-Chung A1 - Lutomski, Corinne A. A1 - El-Baba, Tarick J. A1 - Wang, Beixi A1 - Pagnotti, Vincent S. A1 - Meher, Anil K. A1 - Chakrabarty, Shubhashis A1 - Imperial, Lorelei F. A1 - Madarshahian, Sara A1 - Richards, Alicia L. A1 - Lietz, Christopher B. A1 - Moreno-Pedraza, Abigail A1 - Leach, Samantha M. A1 - Gibson, Stephen C. A1 - Elia, Efstathios A. A1 - Thawoos, Shameemah M. A1 - Woodall, Daniel W. A1 - Jarois, Dean R. A1 - Davis, Eric T.J. A1 - Liao, Guochao A1 - Muthunayake, Nisansala S. A1 - Redding, McKenna J. A1 - Reynolds, Christian A. A1 - Anthony, Thilani M. A1 - Vithanarachchi, Sashiprabha M. A1 - DeMent, Paul A1 - Adewale, Adeleye O. A1 - Yan, Lu A1 - Wager-Miller, James A1 - Ahn, Young-Hoon A1 - Sanderson, Thomas H. A1 - Przyklenk, Karin A1 - Greenberg, Miriam L. A1 - Suits, Arthur G. A1 - Allen, Matthew J. A1 - Narayan, Srinivas B. A1 - Caruso, Joseph A. A1 - Stemmer, Paul M. A1 - Nguyen, Hien M. A1 - Weidner, Steffen A1 - Rackers, Kevin J. A1 - Djuric, Ana A1 - Shulaev, Vladimir A1 - Hendrickson, Tamara L. A1 - Chow, Christine S. A1 - Pflum, Mary Kay H. A1 - Grayson, Scott M. A1 - Lobodin, Vladislav V. A1 - Guo, Zhongwu A1 - Ni, Chi-Kung A1 - Walker, J. Michael A1 - Mackie, Ken A1 - Inutan, Ellen D. A1 - McEwen, Charles N. T1 - New Processes for Ionizing Nonvolatile Compounds in Mass Spectrometry: The Road of Discovery to Current State-of-the-Art N2 - This Perspective covers discovery and mechanistic aspects aswell as initial applications of novel ionization processes for use in massspectrometry that guided us in a series of subsequent discoveries, instrumentdevelopments, and commercialization. Vacuum matrix-assisted ionization onan intermediate pressure matrix-assisted laser desorption/ionization sourcewithout the use of a laser, high voltages, or any other added energy wassimply unbelievable, at first. Individually and as a whole, the variousdiscoveries and inventions started to paint, inter alia, an exciting new pictureand outlook in mass spectrometry from which key developments grew thatwere at the time unimaginable, and continue to surprise us in its simplisticpreeminence. We, and others, have demonstrated exceptional analyticalutility. Our current research is focused on how best to understand, improve, and use these novel ionization processes throughdedicated platforms and source developments. These ionization processes convert volatile and nonvolatile compounds from solid orliquid matrixes into gas-phase ions for analysis by mass spectrometry using, e.g., mass-selected fragmentation and ion mobilityspectrometry to provide accurate, and sometimes improved, mass and drift time resolution. The combination of research anddiscoveries demonstrated multiple advantages of the new ionization processes and established the basis of the successes that lead tothe Biemann Medal and this Perspective. How the new ionization processes relate to traditional ionization is also presented, as wellas how these technologies can be utilized in tandem through instrument modification and implementation to increase coverage ofcomplex materials through complementary strengths. KW - Mass spectrometry PY - 2024 DO - https://doi.org/10.1021/jasms.3c00122 SN - 1879-1123 VL - 35 IS - 12 SP - 2753 EP - 2784 PB - American Chemical Society (ACS) AN - OPUS4-61417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stier, S. P. A1 - Kreisbeck, C. A1 - Ihssen, H. A1 - Popp, M. A. A1 - Hauch, J. A1 - Malek, K. A1 - Reynaud, M. A1 - Goumans, T.P.M. A1 - Carlsson, J. A1 - Todorov, I. A1 - Gold, L. A1 - Räder, A. A1 - Wenzel, W. A1 - Bandesha, S. T. A1 - Jacques, P. A1 - Garcia‐Moreno, F. A1 - Arcelus, O. A1 - Friederich, P. A1 - Clark, S. A1 - Maglione, M. A1 - Laukkanen, A. A1 - Castelli, I. E. A1 - Carrasco, J. A1 - Cabanas, M. C. A1 - Stein, H. S. A1 - Özcan Sandikcioglu, Özlem A1 - Elbert, D. A1 - Reuter, K. A1 - Scheurer, C. A1 - Demura, M. A1 - Han, S. S. A1 - Vegge, T. A1 - Nakamae, S. A1 - Fabrizio, M. A1 - Kozdras, M. T1 - Materials Acceleration Platforms (MAPs) Accelerating Materials Research and Development to Meet Urgent Societal Challenges N2 - AbstractClimate Change and Materials Criticality challenges are driving urgent responses from global governments. These global responses drive policy to achieve sustainable, resilient, clean solutions with Advanced Materials (AdMats) for industrial supply chains and economic prosperity. The research landscape comprising industry, academe, and government identified a critical path to accelerate the Green Transition far beyond slow conventional research through Digital Technologies that harness Artificial Intelligence, Smart Automation and High Performance Computing through Materials Acceleration Platforms, MAPs. In this perspective, following the short paper, a broad overview about the challenges addressed, existing projects and building blocks of MAPs will be provided while concluding with a review of the remaining gaps and measures to overcome them. KW - Advanced materials KW - Artificial intelligence KW - Autonomous labs KW - Materials acceleration platforms KW - Societal challenges KW - MAPs PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-611583 DO - https://doi.org/10.1002/adma.202407791 SP - 1 EP - 26 PB - Wiley AN - OPUS4-61158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García-Acosta, B. A1 - Comes, M. A1 - Bricks, J.L. A1 - Kudinova, M.A. A1 - Kurdyukov, V.V. A1 - Tolmachev, A.I. A1 - Descalzo López, Ana Belén A1 - Marcos, M. Dolores A1 - Martínez-Mánez, Ramon A1 - Moreno, A. A1 - Sancenón, F. A1 - Soto, J. A1 - Villaescusa, L.A. A1 - Rurack, Knut A1 - Barat, J. M. A1 - Escriche, I. A1 - Amorós, P. T1 - Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines KW - Biogene Amine KW - Histamin KW - Farbreaktion KW - Pyralium-Farbstoffe KW - Fluoreszenz KW - Hybrid-Materialien PY - 2006 SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x IS - 21 SP - 2239 EP - 2241 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-12563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Teixeira, M.M. A1 - Moreno, L.F. A1 - Stielow, B.J. A1 - Muszewska, A. A1 - Hainaut, M. A1 - Gonzaga, L. A1 - Abouelleil, A. A1 - Patan, J.S.L. A1 - Priest, M. A1 - Souza, R. A1 - Ferreira, K.S. A1 - Zeng, Q. A1 - da Cunha, M.M.L. A1 - Gladki, A. A1 - Barker, B. A1 - Vicente, V.A. A1 - de Souza, E.M. A1 - Almeida, S. A1 - Henrissat, B. A1 - Vasconelos, A.T.R. A1 - Deng, S. A1 - Vogelmayr, H. A1 - Moussa, T.A.A. A1 - Gorbushina, Anna A1 - Felipe, M.S.S. A1 - Cuomo, C.A. A1 - de Hoog, G.S. T1 - Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota) N2 - The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sexrelated genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi. KW - Black yeast KW - Comparative genomics KW - Chaetothyriales KW - Ecology KW - Evolution KW - Herpotrichiellaceae KW - Phylogeny PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-408720 DO - https://doi.org/10.1016/j.simyco.2017.01.001 SN - 1872-9797 VL - 86 IS - 1 SP - 1 EP - 28 PB - Elsevier CY - Amsterdam AN - OPUS4-40872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frick, B. A1 - Alba-Simionesco, C. A1 - Dosseh, G. A1 - Le Quellec, C. A1 - Moreno, A. J. A1 - Colmenero, J. A1 - Schönhals, Andreas A1 - Zorn, R. A1 - Chrissopoulou, K. A1 - Anastasiadis, S. H. A1 - Dalnoki-Veress, K. T1 - Inelastic neutron scattering for investigating the dynamics of confined glass-forming liquids N2 - Inelastic neutron scattering was employed over recent years to investigate the influence of spatial confinement on the dynamics of glass-forming systems. We review the common phenomena observed by neutron scattering in such different confining hosts like porous glasses, molecular sieves, clays or free standing polymer films, which impose a spatial limitation to the motion of small organic molecules, oligomers or polymers. Near the glass transition temperature the mean squared displacements of the confined molecules show clear deviations from the bulk behavior. The observed increase or decrease of the mean squared displacements confirms the high relevance of the interface interaction near walls of confining media without excluding additional real confinement effects. We show a new comparison of the mean squared displacement for PDMS and PMPS in bulk and in different type of restricting geometries, which evidence a weak influence of the restricting geometry on the local methyl group motion, but a strong influence on the glass transition dynamics, if wall interactions are taken into account. Strong wall interaction is also supported by the intermediate scattering function, measured either by combining neutron backscattering and time-of-flight experiments to cover 3 decades in time from ns to ps or by neutron spin echo, which reveal above Tg an increasing elastic fraction with decreasing pore size and a slowing down of the dynamics. Furthermore we show that a reduction of modes below the Boson peak frequency is a more general feature of confined glass-forming systems. PY - 2005 DO - https://doi.org/10.1016/j.jnoncrysol.2005.03.061 SN - 0022-3093 VL - 351 IS - 33-36 SP - 2657 EP - 2667 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-10831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zabler, S. A1 - Rueda, A. A1 - Rack, A. A1 - Riesemeier, Heinrich A1 - Zaslansky, P. A1 - Manke, I. A1 - Garcia-Moreno, F. A1 - Banhart, J. T1 - Coarsening of grain-refined semi-solid Al-Ge32 alloy: X-ray microtomography and in situ radiography KW - Microtomography KW - Radiography KW - 2D/3D imageanalysis KW - Technical binary alloys KW - LSW PY - 2007 DO - https://doi.org/10.1016/j.actamat.2007.05.028 SN - 1359-6454 SN - 1873-2453 VL - 55 IS - 15 SP - 5045 EP - 5055 PB - Elsevier Science CY - Kidlington AN - OPUS4-20583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Moreno Torres, Benjami A1 - Firdous, R. A1 - Zia, G. J. A. A1 - Stephan, D. T1 - Accelerating the search for alkali-activated cements with sequential learning N2 - With 8% of man-made CO2 emissions, cement production is an important driver of the climate crisis. By using alkali-activated binders, part of the energy-intensive clinker production process can be dispensed. However, as numerous raw materials are involved in the manufacturing process here, the complexity of the materials increases by orders of magnitude. Finding a properly balanced binder formulation is like looking for a needle in a haystack. We have shown for the first time that artificial intelligence (AI)-based optimization of alkali-activated binder formulations can significantly accelerate research. The "Sequential Learning App for Materials Discovery" (SLAMD) aims to accelerate practice transfer. With SLAMD, materials scientists have low-threshold access to AI through interactive and intuitive user interfaces. The value added by AI can be determined directly. For example, the CO2 emissions saved per ton of cement can be determined for each development cycle: the more efficient the AI optimization, the greater the savings. Our material database already includes more than 120,000 data points of alternative binders and is constantly being expanded with new parameters. We are currently driving the enrichment of the data with a life cycle analysis of the building materials. Based on a case study we show how intuitive access to AI can drive the adoption of techniques that make a real contribution to the development of resource-efficient and sustainable building materials of the future and make it easy to identify when classical experiments are more efficient. T2 - fib International Congress CY - Oslo, Norway DA - 12.06.2022 KW - Concrete KW - Materials Design KW - Sequential Learning KW - Machine Learning PY - 2022 SP - 1 EP - 9 AN - OPUS4-56634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -