TY - JOUR A1 - Abbas, Ioana M. A1 - Vranic, M. A1 - Hoffmann, Holger A1 - El-Khatib, Ahmed H. A1 - Montes-Bayón, M. A1 - Möller, H. M. A1 - Weller, Michael G. T1 - Investigations of the copper peptide hepcidin-25 by LC-MS/MS and NMR (+) N2 - Hepcidin-25 was identified as the main iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II)-binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandem mass spectrometry (MS/MS), high-resolution mass spectrometry HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or reference material comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others. KW - Metalloprotein KW - Peptide KW - Chromatography KW - High pH KW - Mobile phase KW - Metrology KW - Purity KW - Reference material KW - ATCUN KW - Copper KW - Nickel PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-457796 UR - http://www.mdpi.com/1422-0067/19/8/2271 SN - 1422-0067 VL - 19 IS - 8 SP - 2271, 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-45779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abbas, Ioana M. A1 - Hoffmann, Holger A1 - Montes-Bayón, M. A1 - Weller, Michael G. T1 - Improved LC-MS/MS method for the quantification of hepcidin-25 in clinical samples N2 - Mass spectrometry-based methods play a crucial role in the quantification of the main iron metabolism regulator hepcidin by singling out the bioactive 25-residue peptide from the other naturally occurring N-truncated isoforms (hepcidin-20, -22, -24), which seem to be inactive in iron homeostasis. However, several difficulties arise in the MS analysis of hepcidin due to the sticky character of the peptide and the lack of suitable standards. Here, we propose the use of amino- and fluoro-silanized autosampler vials to reduce hepcidin interaction to laboratory glassware surfaces after testing several types of vials for the preparation of stock solutions and serum samples for isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS). Furthermore, we have investigated two sample preparation strategies and two chromatographic separation conditions with the aim of developing an LC-MS/MS method for the sensitive and reliable quantification of hepcidin-25 in serum samples. A chromatographic separation based on usual acidic mobile phases was compared with a novel approach involving the separation of hepcidin-25 with solvents at high pH containing 0.1% of ammonia. Both methods were applied to clinical samples in an intra-laboratory comparison of two LC-MS/MS methods using the same hepcidin-25 calibrators with good correlation of the results. Finally, we recommend an LC-MS/MS-based quantification method with a dynamic range of 0.5–40 μg/L for the assessment of hepcidin-25 in human serum that uses TFA-based mobile phases and silanized glass vials. KW - HPLC KW - Liquid chromatography KW - Mass spectrometry KW - Silanization KW - Mobile phase KW - Adsorption KW - Peptide losses KW - Recovery KW - Validation KW - Quality control KW - QC KW - Iron disorders KW - Chronic kidney disease KW - Metrology KW - Round robin exercise KW - Basic solvent KW - Peptide analysis PY - 2018 U6 - https://doi.org/10.1007/s00216-018-1056-0 SN - 1618-2642 SN - 1618-2650 VL - 410 IS - 16 SP - 3835 EP - 3846 PB - Springer Nature CY - Heidelberg AN - OPUS4-45053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -