TY - JOUR A1 - Resch-Genger, Ute A1 - Bremser, Wolfram A1 - Pfeifer, Dietmar A1 - Spieles, Monika A1 - Hoffmann, Angelika A1 - DeRose, P.C. A1 - Zwinkels, J. C. A1 - Gauthier, F. A1 - Ebert, B. A1 - Taubert, D. A1 - Monte, C. A1 - Voigt, J. A1 - Hollandt, J. A1 - Macdonald, R. T1 - State-of-the art comparability of corrected emission spectra. 1. spectral correction with physical transfer standards and spectral fluorescence standards by expert laboratories N2 - The development of fluorescence applications in the life and material sciences has proceeded largely without sufficient concern for the measurement uncertainties related to the characterization of fluorescence instruments. In this first part of a two-part series on the state-of-the-art comparability of corrected emission spectra, four National Metrology Institutes active in high-precision steady-state fluorometry performed a first comparison of fluorescence measurement capabilities by evaluating physical transfer standard (PTS)-based and reference material (RM)-based calibration methods. To identify achievable comparability and sources of error in instrument calibration, the emission spectra of three test dyes in the wavelength region from 300 to 770 nm were corrected and compared using both calibration methods. The results, obtained for typical spectrofluorometric (0°/90° transmitting) and colorimetric (45°/0° front-face) measurement geometries, demonstrated a comparability of corrected emission spectra within a relative standard uncertainty of 4.2% for PTS- and 2.4% for RM-based spectral correction when measurements and calibrations were performed under identical conditions. Moreover, the emission spectra of RMs F001 to F005, certified by BAM, Federal Institute for Materials Research and Testing, were confirmed. These RMs were subsequently used for the assessment of the comparability of RM-based corrected emission spectra of field laboratories using common commercial spectrofluorometers and routine measurement conditions in part 2 of this series (subsequent paper in this issue). KW - Fluorescence KW - Photoluminescence KW - Dye KW - Uncertainty KW - Method comparison KW - Standard KW - Method comparison KW - Spectral correction KW - Spectral fluorescence standard PY - 2012 DO - https://doi.org/10.1021/ac2034503 SN - 0003-2700 SN - 1520-6882 VL - 84 IS - 9 SP - 3889 EP - 3898 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Grabolle, Markus A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Resch-Genger, Ute T1 - Relative and absolute determination of fluorescence quantum yields of transparent samples N2 - Luminescence techniques are among the most widely used detection methods in the life and material sciences. At the core of these methods is an ever-increasing variety of fluorescent reporters (i.e., simple dyes, fluorescent labels, probes, sensors and switches) from different fluorophore classes ranging from small organic dyes and metal ion complexes, quantum dots and upconversion nanocrystals to differently sized fluorophore-doped or fluorophore-labeled polymeric particles. A key parameter for fluorophore comparison is the fluorescence quantum yield (Φf), which is the direct measure for the efficiency of the conversion of absorbed light into emitted light. In this protocol, we describe procedures for relative and absolute determinations of Φf values of fluorophores in transparent solution using optical methods, and we address typical sources of uncertainty and fluorophore class-specific challenges. For relative determinations of Φf, the sample is analyzed using a conventional fluorescence spectrometer. For absolute determinations of Φf, a calibrated stand-alone integrating sphere setup is used. To reduce standard-related uncertainties for relative measurements, we introduce a series of eight candidate quantum yield standards for the wavelength region of ~350–950 nm, which we have assessed with commercial and custom-designed instrumentation. With these protocols and standards, uncertainties of 5–10% can be achieved within 2 h. PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-294202 DO - https://doi.org/10.1038/nprot.2013.087 SN - 1754-2189 SN - 1750-2799 VL - 8 IS - 8 SP - 1535 EP - 1550 PB - Nature Publishing Group CY - Basingstoke AN - OPUS4-29420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Grabolle, Markus A1 - Brehm, Robert A1 - Spieles, Monika A1 - Hamann, F.M. A1 - Wenzel, M. A1 - Hilger, I. A1 - Resch-Genger, Ute T1 - Suitable labels for molecular imaging - influence of dye structure and hydrophilicity on the spectroscopic properties of IpG conjugates N2 - Aiming at the design of highly brilliant NIR emissive optical probes, e.g., for in vivo near-infrared fluorescence imaging (NIRF), we studied the absorption and fluorescence properties of the asymmetric cyanines Dy678, Dy681, Dy682, and Dy676 conjugated to the model antibody IgG. The ultimate goal was here to derive general structure–property relationships for suitable NIR fluorescent labels. These Dy dyes that spectrally match Cy5 and Cy5.5, respectively, were chosen to differ in chromophore structure, i.e., in the substitution pattern of the benzopyrylium end group and in the number of sulfonic acid groups. Spectroscopic studies of the free and IgG-bound fluorophores revealed a dependence of the obtained dye-to-protein ratios on dye hydrophilicity and control of the fluorescence quantum yields (Φf) of the IgG conjugates by the interplay of different fluorescence reduction pathways like dye aggregation and fluorescence resonance energy transfer (FRET). Based upon aggregation studies with these dyes, the amount of dye dimers in the IgG conjugates was determined pointing to dye hydrophilicity as major parameter controlling aggregation. To gain further insight into the exact mechanism of dye dimerization at the protein, labeling experiments at different reaction conditions but constant dye-to-protein ratios in the reaction solution were performed. With Dy682 that displays a Φf of 0.20 in PBS and 0.10 for moderate dye-to-protein ratio of 2.5, a low aggregation tendency, and a superior reactivity in IgG labeling, we identified a promising diagnostic tool for the design of NIR fluorescent probes and protein conjugates. KW - In vivo fluorescence imaging KW - NIR fluorophore KW - Fluorescence quantum yield KW - Cyanine KW - IpG KW - Protein labelling KW - Aggregation KW - Homo-FRET PY - 2011 DO - https://doi.org/10.1021/bc1004763 SN - 1043-1802 SN - 1520-4812 VL - 22 IS - 7 SP - 1298 EP - 1308 PB - ACS Publications CY - Washington, DC AN - OPUS4-24156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rurack, Knut A1 - Spieles, Monika T1 - Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm N2 - The determination of the fluorescence quantum yields (QY, Φf) of a series of fluorescent dyes that span the absorption/excitation and emission ranges of 520-900 and 600-1000 nm is reported. The dyes encompass commercially available rhodamine 101 (Rh-101, Φf = 0.913), cresyl violet (0.578), oxazine 170 (0.579), oxazine 1 (0.141), cryptocyanine (0.012), HITCI (0.283), IR-125 (0.132), IR-140 (0.167), and four noncommercial cyanine dyes with specific spectroscopic features, all of them in dilute ethanol solution. The QYs have been measured relative to the National Institute of Standards and Technology's standard reference material (SRM) 936a (quinine sulfate, QS) on a traceably characterized fluorometer, employing a chain of transfer standard dyes that include coumarin 102 (Φf = 0.764), coumarin 153 (0.544), and DCM (0.435) as links between QS and Rh-101. The QY of Rh-101 has also been verified in direct measurements against QS using two approaches that rely only on instrument correction. In addition, the effects of temperature and the presence of oxygen on the fluorescence quantum yield of Rh-101 have been assessed. KW - Farbstoffe KW - Fluoreszenz KW - Nahes Infrarot KW - Quantenausbeute PY - 2011 DO - https://doi.org/10.1021/ac101329h SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 4 SP - 1232 EP - 1242 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Grabolle, Markus A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Resch-Genger, Ute T1 - Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields N2 - The photoluminescence quantum yield (Φf) that presents a direct measure for the efficiency of the conversion of absorbed photons into emitted photons is one of the spectroscopic key parameters of functional fluorophores. It determines the suitability of such materials for applications in, for example, (bio)analysis, biosensing, and fluorescence imaging as well as as active components in optical devices. The reborn interest in accurate Φf measurements in conjunction with the controversial reliability of reported Φf values of many common organic dyes encouraged us to compare two relative and one absolute fluorometric method for the determination of the fluorescence quantum yields of quinine sulfate dihydrate, coumarin 153, fluorescein, rhodamine 6G, and rhodamine 101. The relative methods include the use of a chain of Φf transfer standards consisting of several 'standard dye' versus 'reference dye' pairs linked to a golden Φf standard that covers the ultraviolet and visible spectral region, and the use of different excitation wavelengths for standard and sample, respectively. Based upon these measurements and the calibration of the instruments employed, complete uncertainty budgets for the resulting Φf values are derived for each method, thereby providing evaluated standard operation procedures for Φf measurements and, simultaneously, a set of assessed Φf standards. KW - Fluorescence KW - Photoluminescence KW - Quantum yield KW - Dye KW - Uncertainty KW - Absolute quantum yield KW - Method comparison KW - Integrating sphere PY - 2011 DO - https://doi.org/10.1021/ac2000303 SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 9 SP - 3431 EP - 3439 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Behnke, Thomas A1 - Brehm, Robert A1 - Grabolle, Markus A1 - Hennig, Andreas A1 - Hoffmann, Angelika A1 - Hoffmann, Katrin A1 - Linck, Lena A1 - Lochmann, Cornelia A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Würth, Christian T1 - Funktionelle Chromophor-Systeme, innovative Validierungskonzepte und rückführbare Standards für die fluoreszenzbasierte multiparametrische Bioanalytik N2 - Unter dem Motto „Innovation und Qualitätssicherung in der (Bio)Analytik“ werden in der Arbeitsgruppe Fluoreszenzspektroskopie der BAM, Bundesanstalt für Materialforschung und -prüfung, funktionelle Chromophor-Systeme, einfache Signalverstärkungs- und Multiplexingstrategien sowie innovative Validierungs- und rückführbare Standardisierungskonzepte für verschiedene fluorometrische Messgrößen und Methoden entwickelt. Im Mittelpunkt stehen dabei molekulare Fluorophore, Nanokristalle mit größenabhängigen optischen Eigenschaften (sogenannte Quantenpunkte, QDs) und fluoreszierende Partikel variabler Größe sowie Sonden und Sensormoleküle für neutrale und ionische Analyte und für die Charakterisierung von funktionellen Gruppen. Dabei erfolgen auch methodische Entwicklungen für die Fluoreszenzspektroskopie, die Fluoreszenzmikroskopie, die Milcrofluorometrie, die Sensorik und die Mikroarraytechnologie. Ziele sind u. a. das Design und die Untersuchung von multiplexfähigen selektiven und sensitiven Sonden für die Biomarkeranalytik, die Entwicklung von Methoden zur Charakterisierung der signalrelevanten Eigenschaften dieser Chromophor-Systeme und zur Charakterisierung von funktionellen Gruppen an Oberflächen und ihre Validierung sowie die Entwicklung und Bereitstellung von formatadaptierbaren, flexibel ersetzbaren Standards für die fluoreszenzbasierte Multiparameteranalytik. T2 - 5. Senftenberger Innovationsforum Multiparameteranalytik CY - Senftenberg, Deutschland DA - 10.03.2011 KW - Multiparametric KW - Multiplexing KW - Fluorescence KW - Nanoparticles KW - NIR dyes KW - Surface analysis KW - Quantum yield KW - Quantum dot KW - Lifetime PY - 2011 SP - 86 EP - 108 CY - Senftenberg AN - OPUS4-23635 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabolle, Markus A1 - Spieles, Monika A1 - Lesnyak, V. A1 - Gaponik, N. A1 - Eychmüller, A. A1 - Resch-Genger, Ute T1 - Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties PY - 2009 DO - https://doi.org/10.1021/ac900308v SN - 0003-2700 SN - 1520-6882 VL - 81 IS - 15 SP - 6285 EP - 6294 PB - American Chemical Society CY - Washington, DC AN - OPUS4-20272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Brehm, Robert A1 - Spieles, Monika A1 - Kaiser, W.A. A1 - Hilger, I. A1 - Resch-Genger, Ute T1 - Novel fluorophores as building blocks for optical probes for in vivo near infrared fluorescence (NIRF) imaging N2 - Aiming at the identification of new fluorescent reporters for targeted optical probes, we assessed the application-relevant features of a novel asymmetric cyanine, DY-681, in comparison to the only clinically approved dye indocyanine green (ICG), the golden imaging standard Cy5.5, and the asymmetric cyanine DY-676 successfully exploited by us for the design of different contrast agents. This comparison included the analysis of the spectroscopic properties of the free fluorophores and their thermal stability in aqueous solution as well as their cytotoxic potential. In addition, the absorption and emission features of IgG-conjugated DY-681 were examined. The trimethine DY-681 exhibited spectral features closely resembling that of the pentamethine Cy5.5. Its high thermal stability in phosphate buffer saline (PBS) solution in conjunction with its low cytotoxicity, reaching similar values as determined for Cy5.5 and DY-676, renders this dye more attractive as ICG and, due to its improved fluorescence quantum yield in PBS, also superior to DY-676. Although in PBS, Cy5.5 was still more fluorescent, the fluorescence quantum yields (Φf) of DY-681 and Cy5.5 in PBS containing 5 mass-% bovine serum albumin (BSA) were comparable. Labeling experiments with DY-681 and the model antibody IgG revealed promisingly high Φf values of the bioconjugated dye. KW - Fluorescence KW - Cyanine dye KW - Cytotoxicity KW - Stability KW - In vivo fluorescence imaging KW - Quantum yield KW - Contrast agent KW - Optical probe PY - 2010 DO - https://doi.org/10.1007/s10895-010-0603-7 SN - 1053-0509 SN - 1573-4994 VL - 20 IS - 3 SP - 681 EP - 693 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-21401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Spieles, Monika A1 - Bremser, Wolfram A1 - Resch-Genger, Ute T1 - Narrow-band emitting solid fluorescence reference standard with certified intensity pattern N2 - The development of a lanthanum-phosphate glass doped with several rare-earth-ions for use as solid fluorescence standard is described. The cuvette-shaped reference material which shows a characteristic emission intensity pattern upon excitation at 365 nm consisting of a multitude of relatively narrow emission bands in the wavelength region between 450 nm and 700 nm is intended for the day-to-day performance validation of fluorescence measuring devices. Evaluation of the fluorescent glass include the determination of all properties which can affect its relative emission intensity profile or contribute to the uncertainty of the certified values like absorption spectra, fluorescence anisotropy, excitation wavelength and temperature dependence of the spectroscopic features, homogeneity of fluorophore distribution, photo- and long-term stability. Moreover, a certification procedure was developed including the normalization of the intensity profile consisting of several narrow emission bands and the calculation of wavelength-dependent uncertainties. Criteria for the design, characterization, and working principle of the new reference material BAM-F012 are presented, and possible applications of this ready-to-use fluorescence standard are discussed. PY - 2015 DO - https://doi.org/10.1021/acs.analchem.5b02209 SN - 0003-2700 SN - 1520-6882 VL - 87 SP - 7204 EP - 7210 PB - American Chemical Society CY - Washington, DC AN - OPUS4-33615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -