TY - CONF A1 - Zencker, Uwe A1 - Weber, Mike A1 - Qiao, Linan A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Mechanical safety analyses of cast iron containers for the KONRAD repository N2 - Within the last years BAM has carried out numerous drop tests with prototype casks made of ductile cast iron onto targets according to the requirements for final disposal of non-heat generating waste in the German KONRAD repository. The results have shown that the target specifications in the acceptance criteria have to be defined more accurately to get reproducible test results with high precision. Hence, a suitable test stand foundation was developed with much effort. The integrity of the upper concrete layer of this target must be preserved during a test. Recently the geometrical properties of a tested cubic cast iron container led to a concentration of the impact forces beneath the container walls. The target was damaged strongly with the consequence of inadmissible reduction of cask stresses. For that reason the target construction was modified. However, the basic design was not changed. A prefabricated concrete slab was still joined by a mortar layer to the IAEA target of the BAM drop test facility. In the course of the optimization of the test stand foundation the concrete slab dimensions and the reinforcement were enlarged. During the drop test repetition the target kept intact. Additionally, the mechanical behavior of the cast iron container and the target was analyzed by finite element calculations. This improved target construction is suggested as a reference target for drop tests with casks whose mass and base area are covered by the container types VI or VII respectively according to the KONRAD repository acceptance criteria. The measurements during the drop tests with cast iron casks have provided the strains on the cask surface at selected positions. This allows the verification of finite element simulations of drop tests which show the stress distribution also inside the component. In September 2008 a drop test was carried out with a cylindrical cast iron cask containing an artificial material defect which was designed under consideration of critical stress states in the cask body. This drop test could demonstrate the safety against failure by fracture of a cask made of a special cast iron with reduced fracture toughness. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Ductile iron KW - Container design KW - Safety assessment KW - Fracture mechanics KW - Dynamic loading conditions PY - 2010 SP - 1 EP - 8 (Session T28 / Paper 220) AN - OPUS4-23844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Weber, Mike A1 - Kömmling, Anja A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Performance of elastomer seals in transport and storage casks N2 - Elastomer seals are widely used as barrier seals in containers for low and intermediate level radioactive waste and for spent fuel transportation casks. In addition, they are also used for spent fuel storage and transportation casks (dual purpose casks (DPC)) as auxiliary seals to allow leakage rate measurements of metal barrier seals for demonstration of their proper assembling conditions. Depending on the area of use, the rubber materials have to demonstrate proper sealing performance with regard to mechanical, thermal, and environmental conditions as well as irradiation during the entire operation period. Concerning DPC, degradation effects should be limited in a way that, for example, effects from potentially released decomposition elements may not harm e.g. metal barrier seals. Leakage rate measurements should be possible also after long interim storage periods prior to subsequent transportation. Because of the complex requirements resulting from the various applications of containers for radioactive waste and spent nuclear fuel, BAM has initiated several test programmes for investigating the behaviour of elastomer seals. In this contribution the current status is described and first results are discussed. T2 - International conference on management of spent fuel from nuclear power reactors: An integrated approach to the back end of the fuel cycle CY - Vienna, Austria DA - 15.06.2015 KW - Ageing KW - Elastomer KW - Glass-rubber transition KW - Irradiation KW - Material model PY - 2015 SP - 1 EP - 8 AN - OPUS4-33553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Völzke, Holger A1 - Schulze, Dietmar T1 - Numerical simulation of the behaviour of elastomer seals under consideration of time dependent effects N2 - Due to delays in the site-selection procedure to establish a deep geological repository for spent nuclear fuel and high level waste and in construction of the already licensed Konrad-repository for low and intermediate level waste without heat generation, extended periods of interim storage become more relevant in Germany. BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues. The long-term performance of elastomer seals for lid Systems of transport and storage casks whether used as auxiliary seals in spent fuel caslcs or as primary seals for low and intermediate level waste packages is an important issue in this context (Jaunich, 2013; Jaunich, 2014; Kömmling, 2015). The polymeric structure of these seals causes a complex mechanical behaviour with time-dependent elasticity reduction and loss of elastic recovery. The paper presents first results of a comprehensive test Programme consisting of several static and dynamic mechanical short- and long-term tests which have been carried out at BAM on specimens made of representative types of elastomers, fluorocarbon rubber (FKM) and ethylene propylene diene rubber (EPDM). The investigation of the test results used to identify material models and their Parameters as well as the development of two finite element models for the numerical Simulation of tension and compression tests using the finite element code ABAQUS® are described. The calculation results are presented in comparison to the test results. The influence of important material and test parameters was investigated and discussed in sensitivity analyses. T2 - RAMTRANSPORT 2015 - International conference on the radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Numerical analysis KW - Extended interim storage KW - Elastomer seals PY - 2015 SP - Session 4, Paper 28, 1 EP - 9 AN - OPUS4-33832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Schulze, Dietmar A1 - Probst, Ulrich T1 - Testing and Numerical Simulation of Elastomers - From Specimen Tests to Simulation of Seal Behavior under Assembly Conditions N2 - Due to delays in the siting procedure to establish a deep geological repository for spent nuclear fuel and high level radioactive waste as well as in construction of the already licensed Konrad repository for low and intermediate level radioactive waste, extended periods of interim storage become more relevant in Germany. BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues. The long-term performance of elastomer seals for lid systems of transport and storage casks, whether used as auxiliary seals in spent fuel casks or as primary seals for low and intermediate level waste packages, is an important issue in this context. The polymeric structure of these seals causes a complex mechanical behavior with time-dependent sealing force reduction. The results of a comprehensive purpose-designed test program consisting of basic compression and tension tests as well as relaxation tests on unaged specimens of representative types of elastomers (fluorocarbon rubber (FKM) and ethylene propylene diene rubber (EPDM)) at different temperatures and strain rates are presented. They were used to identify the constitutive behavior and to obtain parameters for finite element material models provided by the computer code ABAQUS®. After estimating the influence of uncertainties such as Poisson’s ratio and friction coefficient by sensitivity analyses, the chosen parameters had to prove their suitability for the finite element simulation of the specimen tests themselves. Based on this preliminary work the simulation of a specific laboratory test configuration containing a typical elastomer seal with circular cross section is presented. The chosen finite element material model and the implemented parameters had to show that they are able to represent not only the specimen behavior under predominantly uniaxial load but also the more complex stress states in real components. Deviations between the measured and calculated results are pointed out and discussed. For the consideration of long-term effects in the simulation of elastomer behavior, test results of aged specimens are needed. First information about a new test program, started recently and planned to provide these data, are given. T2 - ASME 2017 Pressure Vessels & Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Time dependent effects KW - Aging KW - Elastomeric seals KW - Low temperature behavior KW - Simulation KW - Testing PY - 2017 AN - OPUS4-41840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Simulation of compression set of epdm o-rings during aging N2 - It is common practice in the application of finite element analysis to model compression set (CS) of elastomers during aging with two different material models according to the two-network theory of Tobolsky. The theory relies on the existence of two networks. The first one represents the original network after vulcanization and is sensitive to chain scission. The second network accounts for the formation of additional crosslinking during aging. Besides the use of user subroutines to describe the two-network model, an element overlay technique is also needed as the full set of both material behaviors did not exist for assignment to a single element. This element overlay technique is valuable for research and developmental purposes but makes extension to industrial usage quite challenging. Our goal is to simulate the CS of elastomers after long-term aging in a commercial finite element software with no need for extra subroutine codes or mesh superposition. Ethylene propylene diene (EPDM) O-rings were aged in a compressed state at 75 °C, 100 °C, 125 °C and 150 °C for up to 183 days. Investigations of the experimental test results were used to identify material models and their parameters to develop a finite element model to simulate CS. The model was implemented in the finite element software ABAQUS/Standard® with a sequential temperature-displacement coupling. Regarding the influence of temperature, the Arrhenius equation is adopted for the time-temperature relationship. The activation energy value that is required for the simulation is firstly determined from shifting the experimental CS results with the time-temperature superposition technique and plotting the shift factors in an Arrhenius diagram. The experiments were compared with the simulation results. Afterwards different activation energies were used in the simulation and discussed. A suitable choice of the activation energy value with regard to the reference temperature and the test temperature is presented. With the chosen activation energies, the match between numerical CS values after long-term aging and the experimental results was improved. T2 - ASME 2022 Pressure Vessels & Piping Conference CY - Las Vegas, USA DA - 17.07.2022 KW - Simulation KW - Compression set KW - EPDM KW - Aging PY - 2022 SP - 1 EP - 9 AN - OPUS4-57370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Völzke, Holger A1 - Nieslony, Gregor T1 - Consequences of an Imperfectly Mounted Reinforcement Cage in a Cylindrical Concrete Container During Mechanical Specimen Tests N2 - In 2007 the license for the German Konrad repository for low and intermediate level radioactive waste was finally confirmed. Since then, the site is improved, prepared and equipped for the currently planned start of waste package emplacement in 2029. Bundesanstalt fuer Materialforschung und -pruefung is regularly contracted by the Bundesgesellschaft für Endlagerung as the responsible authority for waste product control, waste container design testing, and waste package acceptance. In this context BAM is mainly responsible for design testing of various container types including the evaluation of quality assurance measures for container manufacturing. In addition to general requirements concerning container design, the casks have to withstand specific mechanical load scenarios. Drop tests from different heights under consideration of the most damaging drop orientation and a stacking test are two examples for necessary safety demonstrations. If the containers are made from concrete the reinforcement has the function to absorb tensile forces the concrete is not able to withstand by its own. Because of manufacturing imperfections of cylindrical concrete containers manufactured already decades ago, the reinforcement cages are not always exactly, asymmetrically positioned when they were poured. This inspired BAM to perform various ABAQUS® finite-element (FE) simulations by using the example of a simplified cylindrical container design with generic dimensions. On the basis of the calculated tensile and compressive stress distributions suggestions are derived on how a cylindrical concrete container with an imperfectly placed reinforcement cage has to be oriented for a drop or stacking test to ensure the most damaging test scenario. T2 - RAMTRANS 2024 CY - London, United Kingdom DA - 14.05.2024 KW - Finite-element-analysis KW - Container design testing procedure KW - Reinforced concrete containers KW - Drop test KW - Stacking test KW - Imperfectly mounted reinforcement cage PY - 2024 AN - OPUS4-60120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -