TY - CONF A1 - Komann, Steffen A1 - Kiyak, Yusuf A1 - Wille, Frank A1 - Zerbst, Uwe A1 - Weber, Mike A1 - Klingbeil, Dietmar T1 - Assessment of ductile cast iron fracture mechanics analysis within licensing of German transport packages N2 - In the design approval of transport packages for radioactive materials, the mechanical and thermal safety assessment is carried out in Germany by competent authority BAM. In recent years BAM was involved in several licensing procedures of new spent fuel and HLW package designs, where the cask body is of Ductile Cast Iron (DCI). According to IAEA regulations package designs have to fulfill requirements for specific conditions of transport. Type B(U) packages must withstand the defined accident conditions of transport. The temperature range from -40°C up to the operational temperature has to be considered. For the cask material DCI, it is necessary to determine safety against brittle fracture. The German guideline BAM-GGR 007 defines requirements for fracture mechanics of packagings made of DCI. Due to complex cask body structure and the dynamic loading a fracture mechanical assessment by analytical approaches is not always possible. Experience of recent design approval procedures show that the application of numerical calculations are applicable to determine the stresses and stress intensity factors in the cask body. At the first step a numerical analysis has to be done to identify the loading state at the whole cask body. Secondly an analysis of a detail of the cask body is made considering the displacement boundary conditions of the global model. An artificial flaw is considered in this detailed model to calculate the fracture mechanical loading state. The finite element mesh was strongly refined in the area of the flaw. The size of the artificial flaw is based on the ultrasonic inspection acceptance criteria applied for cask body manufacture. The applicant (GNS) developed additional analysis tools for calculation of stress intensity factor and/or J-Integral. The assessment approach by BAM led to the decision to develop own tools to the possibility for independent proof of the results. The paper describes the authority assessment approach for DCI fracture mechanics analysis. The validation procedure incl. the development of own tools is explained. BAM developed a postprocessor to determine the fracture mechanical loads. A horizontal 1 m puncture bar drop test is used to give a detailed description of the assessment procedure. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 PY - 2013 SP - 1 EP - 10 PB - Omnipress AN - OPUS4-30175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Hauer, Katharina A1 - Herz, A. A1 - Kreienmeyer, M. T1 - Aufbau eines Aufprallfundamentes mit reproduzierbaren Eigenschaften für Baumusterprüfungen von Abfallbehältern für das Endlager Konrad N2 - Abgeleitet aus den in Teil 3 der „Systemanalyse Konrad“ definierten Lastannahmen für den „untertägigen Anlagenbereich“ müssen Verpackungen, die der Abfallbehälterklasse I (ABK I) mit dem zusätzlichen Merkmal der störfallfesten (sf) Verpackung oder der ABK II zugeordnet werden, gemäß den „Endlagerungsbedingungen, Endlager Konrad“, nach einem „…Fall aus 5 m Höhe auf eine unnachgiebige Unterlage…“ bestimmten Anforderungen genügen. Eine nähere Beschreibung der Prüfeinrichtung sowie die Definition detaillierter Anforderungen an das Aufprallfundament erfolgen in der „Produktkontrolle, Endlager Konrad“: „Die Prüfeinrichtung, bestehend aus einer Hebeeinrichtung und einem Fundament ist so zu gestalten, dass der Fall des Prüfmusters in jeder beliebigen Aufprallorientierung aus 5 m Höhe, gemessen von der Unterkante des Prüfmusters zum Fundament, möglich ist. Das Fundament ist aus Beton der Mindestgüte B 35 herzustellen und muss so beschaffen und verankert sein, dass keine Zerstörung in zahlreiche kleinere Bruchstücke erfolgt und keine horizontale Verschiebung des Fundamentes oder seiner Teile auftritt. Maße und Masse des Fundaments müssen so beschaffen sein, dass der Einfluss des Baugrundes unter dem Fundament auf den Aufprallwiderstand vernachlässigbar ist.“ Im Rahmen der Bauartprüfung für Behälter zur Endlagerung radioaktiver Abfälle mit zu vernachlässigender Wärmeentwicklung im Endlager Konrad wird die Bundesanstalt für Materialforschung und -prüfung (BAM) von der Bundesgesellschaft für Endlagerung (BGE) als Sachverständige hinzugezogen und ist in der Regel auch mit der Durchführung der notwendigen Fallprüfungen auf dem Testgelände Technische Sicherheit der BAM (BAM TTS) einschließlich der Bereitstellung der benötigten Prüfeinrichtungen sowie des regelkonformen Aufprallfundamentes beauftragt. Der Prozess, beginnend von der Gewährleistung einer von allen Beteiligten als gültig bewerteten Fallprüfung bis hin zur abschließenden Bewertung und Interpretation der Versuchsergebnisse erfordert dabei u.a. eine sorgfältige Planung und Fertigung der für das Endlager Konrad repräsentativen Fundamentplatte und deren Ankopplung an einen Untergrund im Sinne der „Regulations for the Safe Transport of Radioactive Material“ wie er zum Beispiel auf den beiden Fallversuchsanlagen des BAM Testgelände Technische Sicherheit (BAM TTS) zur Verfügung steht. Um diese Anforderungen zu erfüllen muss zum einen der Erhalt der Integrität der Fundamentplatte beim Fallversuch durch eine geeignete Auswahl und kraftflussgerechte Anordnung der Stabstahl-Bewehrung sowie deren Verankerung garantiert und damit eine unzulässige Energieaufnahme durch Risse sowie eine unzulässige „… Zerstörung (der Fundamentplatte) in zahlreiche kleinere Bruchstücke …“, wie in [3] gefordert, verhindert werden. Außerdem ist zu gewährleisten, dass der Beton die Anforderungen an die vorgeschriebene Mindestgüte bzw. -festigkeit zum Zeitpunkt der Fallprüfung erfüllt, die Betonfestigkeit jedoch zur Vermeidung unnötig verschärfter Prüfrandbedingungen eine zu definierende Obergrenze nicht überschreitet. Ausgehend von dem 2009 im Rahmen der KONTEC veröffentlichten Wissensstand präsentiert die BAM im vorliegenden Beitrag die wesentlichen Ergebnisse der zwischenzeitlich bei der Planung und Durchführung von zahlreichen Fallprüfungen gewonnenen Erfahrungen bzgl. Spezifikation und Fertigung der für die Fallversuche notwendigen Fundamentplatten sowie deren Anbindung an den Untergrund. Neben den immer wieder notwendigen Anstrengungen zur Gewährleistung einer im Rahmen der Definition korrekten Betondruckfestigkeit am Tag der Fallprüfung wird die Anpassung der Bewehrungsführung an verschiedene Fallpositionen diskutiert. Zur Ergänzung des gültigen Regelwerks entsteht parallel zu diesem Dokument eine Fachnotiz, in der BGE und BAM die Vorgaben und Spezifikationen zur regelwerkskonformen Herstellung und Montage von Fundamentplatten für Fallprüfungen im Rahmen der Behälterbauartprüfungsverfahren für das Endlager Konrad zusammenfassen und veröffentlichen werden. Diese Fachnotiz soll detaillierte Vorgaben und Spezifikationen zur Planung, Beauftragung, Herstellung und abschließenden Prüfung eines solchen Fundamentes und dessen Anbindung an den Untergrund enthalten. Damit soll allen beteiligten Organisationen wie Antragstellern, Sachverständigen und BGE ein langfristig verlässlicher Leitfaden im Hinblick auf die Durchführung anforderungsgerechter Fallprüfungen unter definierten und reproduzierbaren Randbedingungen im Rahmen der Bauartprüfungsverfahren für das Endlager Konrad an die Hand gegeben werden. T2 - KONTEC 2021 CY - Dresden, Germany DA - 25.08.2021 KW - Aufprallfundament KW - Endlager Konrad KW - Fallprüfung PY - 2021 SP - 1 EP - 10 CY - Dresden AN - OPUS4-53372 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Hauer, Katharina A1 - Herz, A. A1 - Kreienmeyer, M. T1 - Aufbau eines Aufprallfundamentes mit reproduzierbaren Eigenschaften für Baumusterprüfungen von Abfallbehältern für das Endlager Konrad N2 - Abgeleitet aus den in Teil 3 der „Systemanalyse Konrad“ [1] definierten Lastannahmen für den „untertägigen Anlagenbereich“ müssen Verpackungen, die der Abfallbehälterklasse I (ABK I) mit dem zusätzlichen Merkmal der störfallfesten (sf) Verpackung oder der ABK II zugeordnet werden, gemäß den „Endlagerungsbedingungen, Endlager Konrad“ [2], nach einem „…Fall aus 5 m Höhe auf eine unnachgiebige Unterlage…“ bestimmten Anforderungen genügen. Eine nähere Beschreibung der Prüfeinrichtung sowie die Definition detaillierter Anforderungen an das Aufprallfundament erfolgen in der „Produktkontrolle, Endlager Konrad“ [3]: „Die Prüfeinrichtung, bestehend aus einer Hebeeinrichtung und einem Fundament ist so zu gestalten, dass der Fall des Prüfmusters in jeder beliebigen Aufprallorientierung aus 5 m Höhe, gemessen von der Unterkante des Prüfmusters zum Fundament, möglich ist. Das Fundament ist aus Beton der Mindestgüte B 35 herzustellen und muss so beschaffen und verankert sein, dass keine Zerstörung in zahlreiche kleinere Bruchstücke erfolgt und keine horizontale Verschiebung des Fundamentes oder seiner Teile auftritt. Maße und Masse des Fundaments müssen so beschaffen sein, dass der Einfluss des Baugrundes unter dem Fundament auf den Aufprallwiderstand vernachlässigbar ist.“ Im Rahmen der Bauartprüfung für Behälter zur Endlagerung radioaktiver Abfälle mit zu vernachlässigender Wärmeentwicklung im Endlager Konrad wird die Bundesanstalt für Materialforschung und -prüfung (BAM) von der Bundesgesellschaft für Endlagerung (BGE) als Sachverständige hinzugezogen und ist in der Regel auch mit der Durchführung der notwendigen Fallprüfungen auf dem Testgelände Technische Sicherheit der BAM (BAM TTS) einschließlich der Bereitstellung der benötigten Prüfeinrichtungen sowie des regelkonformen Aufprallfundamentes beauftragt. Der Prozess, beginnend von der Gewährleistung einer von allen Beteiligten als gültig bewerteten Fallprüfung bis hin zur abschließenden Bewertung und Interpretation der Versuchsergebnisse erfordert dabei u.a. eine sorgfältige Planung und Fertigung der für das Endlager Konrad repräsentativen Fundamentplatte und deren Ankopplung an einen Untergrund im Sinne der „Regulations for the Safe Transport of Radioactive Material“ [4], [5] wie er zum Beispiel auf den beiden Fallversuchsanlagen des BAM Testgelände Technische Sicherheit (BAM TTS) zur Verfügung steht. Um diese Anforderungen zu erfüllen muss zum einen der Erhalt der Integrität der Fundamentplatte beim Fallversuch durch eine geeignete Auswahl und kraftflussgerechte Anordnung der Stabstahl-Bewehrung sowie deren Verankerung garantiert und damit eine unzulässige Energieaufnahme durch Risse sowie eine unzulässige „… Zerstörung (der Fundamentplatte) in zahlreiche kleinere Bruchstücke …“, wie in [3] gefordert, verhindert werden. Außerdem ist zu gewährleisten, dass der Beton die Anforderungen an die vorgeschriebene Mindestgüte bzw. -festigkeit zum Zeitpunkt der Fallprüfung erfüllt, die Betonfestigkeit jedoch zur Vermeidung unnötig verschärfter Prüfrandbedingungen eine zu definierende Obergrenze nicht überschreitet. Ausgehend von dem 2009 im Rahmen der KONTEC veröffentlichten Wissensstand [6] präsentiert die BAM im vorliegenden Beitrag die wesentlichen Ergebnisse der zwischenzeitlich bei der Planung und Durchführung von zahlreichen Fallprüfungen gewonnenen Erfahrungen bzgl. Spezifikation und Fertigung der für die Fallversuche notwendigen Fundamentplatten sowie deren Anbindung an den Untergrund. Neben den immer wieder notwendigen Anstrengungen zur Gewährleistung einer im Rahmen der Definition korrekten Betondruckfestigkeit am Tag der Fallprüfung wird die Anpassung der Bewehrungsführung an verschiedene Fallpositionen diskutiert. Zur Ergänzung des gültigen Regelwerks entsteht parallel zu diesem Dokument eine Fachnotiz, in der BGE und BAM die Vorgaben und Spezifikationen zur regelwerkskonformen Herstellung und Montage von Fundamentplatten für Fallprüfungen im Rahmen der Behälterbauartprüfungsverfahren für das Endlager Konrad zusammenfassen und veröffentlichen werden. Diese Fachnotiz soll detaillierte Vorgaben und Spezifikationen zur Planung, Beauftragung, Herstellung und abschließenden Prüfung eines solchen Fundamentes und dessen Anbindung an den Untergrund enthalten. Damit soll allen beteiligten Organisationen wie Antragstellern, Sachverständigen und BGE ein langfristig verlässlicher Leitfaden im Hinblick auf die Durchführung anforderungsgerechter Fallprüfungen unter definierten und reproduzierbaren Randbedingungen im Rahmen der Bauartprüfungsverfahren für das Endlager Konrad an die Hand gegeben werden. T2 - KONTEC 2021 CY - Dresden, Germany DA - 25.08.2021 KW - Endlager Konrad KW - Fallprüfung KW - Aufprallfundament PY - 2021 AN - OPUS4-53374 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Herz, A. A1 - Kreienmeyer, M. T1 - Design of a Drop Test Target with Reproducible Properties for Konrad Prototype Testing N2 - Beginning in 1976 the former iron ore mine Konrad was geologically investigated concerning its suitability as a location for a German final repository for low and intermediate level waste. After a comprehensive licensing procedure it was approved and is now being prepared and equipped for the planned start of storage in 2027. At the end of the 1980s, the requirements for waste containers for storage in this repository were defined for the first time on the basis of an incident analysis of the on-site handling procedures, beginning with the unloading of the packages after the arrival at the site up to the final positioning in the underground storage galleries. A 5-meter drop onto the rock ground of the mine was identified as the covering case for high mechanical requirements (ABK II container class). In contrast to the 9-meter drop according to the IAEA Regulations for the Safe Transport of Radioactive Material, the 5-meter drop is performed onto a hard but not essentially unyielding target. The container is typically not protected by an impact limiter. The requirements for a potential test facility are described in the regulations for the Konrad repository. The mechanical strength of the target is defined as a concrete strength equivalent to the identified properties of the rock ground of the mine. Since 1991 BAM has consistently used precast reinforced concrete slabs as target for drop tests in the framework of licensing procedures as well as in research projects. While the original design fulfilled the requirement for the integrity of the concrete slab in most cases, it failed when drop tests onto an edge of a container were performed. A redesigned concrete slab developed in a research project and suggested as a reference target in 2009 has been successfully used in Konrad licensing procedures since then. The paper gives a brief overview of the historical development and it describes BAM’s efforts and approaches to continuously guarantee a concrete slab of defined quality and to provide a test setup for valid drop tests from the applicants and the authorities view. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Target KW - Drop test KW - Final repository Konrad PY - 2023 SP - 1 EP - 11 AN - OPUS4-58563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike T1 - Design of a Drop Test Target with Reproducible Properties for Konrad Prototype Testing N2 - Beginning in 1976 the former iron ore mine Konrad was geologically investigated concerning its suitability as a location for a German final repository for low and intermediate level waste. After a comprehensive licensing procedure it was approved and is now being prepared and equipped for the planned start of storage in 2027. At the end of the 1980s, the requirements for waste containers for storage in this repository were defined for the first time on the basis of an incident analysis of the on-site handling procedures, beginning with the unloading of the packages after the arrival at the site up to the final positioning in the underground storage galleries. A 5-meter drop onto the rock ground of the mine was identified as the covering case for high mechanical requirements (ABK II container class). In contrast to the 9-meter drop according to the IAEA Regulations for the Safe Transport of Radioactive Material, the 5-meter drop is performed onto a hard but not essentially unyielding target. The container is typically not protected by an impact limiter. The requirements for a potential test facility are described in the regulations for the Konrad repository. The mechanical strength of the target is defined as a concrete strength equivalent to the identified properties of the rock ground of the mine. Since 1991 BAM has consistently used precast reinforced concrete slabs as target for drop tests in the framework of licensing procedures as well as in research projects. While the original design fulfilled the requirement for the integrity of the concrete slab in most cases, it failed when drop tests onto an edge of a container were performed. A redesigned concrete slab developed in a research project and suggested as a reference target in 2009 has been successfully used in Konrad licensing procedures since then. The paper gives a brief overview of the historical development and it describes BAM’s efforts and approaches to continuously guarantee a concrete slab of defined quality and to provide a test setup for valid drop tests from the applicants and the authorities view. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Final repository Konrad KW - Drop test KW - Target PY - 2023 AN - OPUS4-58564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike T1 - Design of a Drop Test Target with Reproducible Properties for Konrad Prototype Testing N2 - Beginning in 1976 the former iron ore mine Konrad was geologically investigated concerning its suitability as a location for a German final repository for low and intermediate level waste. After a comprehensive licensing procedure it was approved and is now being prepared and equipped for the planned start of storage in 2027. At the end of the 1980s, the requirements for waste containers for storage in this repository were defined for the first time on the basis of an incident analysis of the on-site handling procedures, beginning with the unloading of the packages after the arrival at the site up to the final positioning in the underground storage galleries. A 5-meter drop onto the rock ground of the mine was identified as the covering case for high mechanical requirements (ABK II container class). In contrast to the 9-meter drop according to the IAEA Regulations for the Safe Transport of Radioactive Material, the 5-meter drop is performed onto a hard but not essentially unyielding target. The container is typically not protected by an impact limiter. The requirements for a potential test facility are described in the regulations for the Konrad repository. The mechanical strength of the target is defined as a concrete strength equivalent to the identified properties of the rock ground of the mine. Since 1991 BAM has consistently used precast reinforced concrete slabs as target for drop tests in the framework of licensing procedures as well as in research projects. While the original design fulfilled the requirement for the integrity of the concrete slab in most cases, it failed when drop tests onto an edge of a container were performed. A redesigned concrete slab developed in a research project and suggested as a reference target in 2009 has been successfully used in Konrad licensing procedures since then. The paper gives a brief overview of the historical development and it describes BAM’s efforts and approaches to continuously guarantee a concrete slab of defined quality and to provide a test setup for valid drop tests from the applicants and the authorities view. T2 - ASME 2023 Pressure Vessels & Piping Conference (PVP2023) CY - Atlanta, GA, USA DA - 16.07.2023 KW - Final repository Konrad KW - Drop test KW - Target PY - 2023 AN - OPUS4-58565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike T1 - Consequences of an Imperfectly Mounted Reinforcement Cage in a Cylindrical Concrete Container During Mechanical Specimen Tests N2 - In 2007 the license for the German Konrad repository for low and intermediate level radioactive waste was finally confirmed. Since then, the site is improved, prepared and equipped for the currently planned start of waste package emplacement in 2029. Bundesanstalt fuer Materialforschung und -pruefung is regularly contracted by the Bundesgesellschaft für Endlagerung as the responsible authority for waste product control, waste container design testing, and waste package acceptance. In this context BAM is mainly responsible for design testing of various container types including the evaluation of quality assurance measures for container manufacturing. In addition to general requirements concerning container design, the casks have to withstand specific mechanical load scenarios. Drop tests from different heights under consideration of the most damaging drop orientation and a stacking test are two examples for necessary safety demonstrations. If the containers are made from concrete the reinforcement has the function to absorb tensile forces the concrete is not able to withstand by its own. Because of manufacturing imperfections of cylindrical concrete containers manufactured already decades ago, the reinforcement cages are not always exactly, asymmetrically positioned when they were poured. This inspired BAM to perform various ABAQUS® finite-element (FE) simulations by using the example of a simplified cylindrical container design with generic dimensions. On the basis of the calculated tensile and compressive stress distributions suggestions are derived on how a cylindrical concrete container with an imperfectly placed reinforcement cage has to be oriented for a drop or stacking test to ensure the most damaging test scenario. T2 - RAMTRANS 2024 CY - London, United Kingdom DA - 14.05.2024 KW - Finite-element-analysis KW - Container design testing procedure KW - Reinforced concrete containers KW - Drop test KW - Stacking test KW - Imperfectly mounted reinforcement cage PY - 2024 AN - OPUS4-60120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike T1 - Numerical Approach to Determine the Correct Length for the IAEA Puncture Bar Drop Test N2 - Among other mechanical tests the 1 meter drop onto a steel puncture bar shall be considered for accident safe packages for the transport of radioactive material. According with the IAEA regulations “the bar shall be of solid mild steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long, unless a longer bar would cause greater damage…”. The most damaging puncture bar length can be estimated by iterative processes in numerical simulations. On the one hand, a sufficient puncture bar length has to guarantee that shock absorbers or other attachments do not prevent or reduce the local load application to the package, on the other hand, a longer and thus less stiff bar causes a smaller maximum contact force. The contrary influence of increasing puncture bar length and increasing effective drop height shall be taken into account if a shock absorber is directly placed in the target area. The paper presents a numerical approach to identify the bar length that causes maximum damage to the package. Using the example of two typical package masses the sensitivity of contact forces and puncture bar deformations to the initial length are calculated and assessed with regard to the international IAEA package safety requirements. T2 - ASME Pressure Vessels and Piping Conference 2018 CY - Prague, Czech Republic DA - 15.07.2018 KW - Transport of radioactive materials KW - Mechanical assessment KW - Puncture bar test KW - Length of puncture bar KW - Numerical simulation PY - 2018 AN - OPUS4-45785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Zencker, Uwe T1 - Numerical approach to determine the correct puncture bar length for the IAEA puncture bar drop test N2 - Among other mechanical tests the 1 meter drop onto a steel puncture bar shall be considered for accident safe packages for the transport of radioactive material. According with the IAEA regulations “the bar shall be of solid mild steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long, unless a longer bar would cause greater damage…”. The most damaging puncture bar length can be estimated by iterative processes in numerical simulations. On the one hand, a sufficient puncture bar length has to guarantee that shock absorbers or other attachments do not prevent or reduce the local load application to the package, on the other hand, a longer and thus less stiff bar causes a smaller maximum contact force. The contrary influence of increasing puncture bar length and increasing effective drop height shall be taken into account if a shock absorber is directly placed in the target area. The paper presents a numerical approach to identify the bar length that causes maximum damage to the package. Using the example of two typical package masses the sensitivity of contact forces and puncture bar deformations to the initial length are calculated and assessed with regard to the international IAEA package safety requirements. T2 - ASME Pressure Vessels and Piping Conference 2018 CY - Prague, Czech Republic DA - 15.07.2018 KW - Length of puncture bar KW - Mechanical assessment KW - Numerical simulation KW - Puncture bar test KW - Transport of radioactive materials PY - 2018 SP - PVP2018-84614, 1 EP - 7 AN - OPUS4-46538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike T1 - Consequences of an imperfectly mounted reinforcement cage in a generical cylindrical concrete container during mechanical specimen tests N2 - By highest court decision in 2007 the issued license for the Konrad repository (a former iron ore mine) for low and intermediate level radioactive waste was finally confirmed. Since then, the site is improved, prepared and equipped for the currently planned start of waste package emplacement by 2029. The Bundesanstalt fuer Materialforschung und -pruefung (BAM, Federal Institute for Materials Research and Testing) is regularly contracted by the Bundesgesellschaft für Endlagerung (BGE, Federal Company for Radioactive Waste Disposal) as the responsible authority for waste product control, waste container design testing, and waste package acceptance. In this context BAM is mainly responsible for design testing of various container types including the evaluation quality assurance measures for container manufacturing. In the written Konrad disposal requirements [1] [2], all acceptance criteria for potential final disposal containers are defined. In addition to general requirements concerning container design, materials, dimensions and others, specific mechanical load scenarios the casks have to withstand are derived from an analysis of the on-site handling and emplacement procedures. Drop tests from different heights under consideration of the most damaging drop orientation and a stacking test are two examples for safety demonstrations that have to be performed during the container design testing procedure to qualify the respective container type. The containers, whether cubic or cylindrical containers, can be made from different materials like ductile cast iron, reinforced concrete or as welded construction from steel plates and profiles. In case of concrete containers the reinforcement has the function to absorb tensile forces the concrete is not able to withstand by its own. Because of manufacturing imperfections of cylindrical concrete waste containers manufactured already decades ago, the reinforcement cages are not always exactly, axisymmetrically positioned when they were poured. This inspired BAM to perform various ABAQUS finite-element (FE) simulations [3] by using the example of a simplified cylindrical container design with generic dimensions and pure elastic material properties. As outcome the stress conditions in the container during the drop test impact under different drop positions and during the stacking test were investigated and are explained and illustrated in this contribution. Different reinforcement cage positions were calculated and compared. On the basis of the calculated tensile and compressive stress distributions suggestions are derived on how a cylindrical concrete container with an imperfectly placed reinforcement cage has to be oriented for a drop or stacking test to ensure the most damaging test scenario. T2 - ASME 2024 Pressure Vessels & Piping Conference CY - Bellevue, Washington, USA DA - 28.07.2024 KW - Container design testing procedure KW - Reinforced concrete containers KW - Drop test KW - Stacking test KW - Imperfectly mounted reinforcement cage KW - Finite-element-analysis PY - 2024 AN - OPUS4-62560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Völzke, Holger A1 - Nieslony, Gregor T1 - Consequences of an imperfectly mounted reinforcement cage in a generical cylindrical concrete container during mechanical specimen tests N2 - By highest court decision in 2007 the issued license for the Konrad repository (a former iron ore mine) for low and intermediate level radioactive waste was finally confirmed. Since then, the site is improved, prepared and equipped for the currently planned start of waste package emplacement by 2029. The Bundesanstalt fuer Materialforschung und -pruefung (BAM, Federal Institute for Materials Research and Testing) is regularly contracted by the Bundesgesellschaft für Endlagerung (BGE, Federal Company for Radioactive Waste Disposal) as the responsible authority for waste product control, waste container design testing, and waste package acceptance. In this context BAM is mainly responsible for design testing of various container types including the evaluation quality assurance measures for container manufacturing. In the written Konrad disposal requirements all acceptance criteria for potential final disposal containers are defined. In addition to general requirements concerning container design, materials, dimensions and others, specific mechanical load scenarios the casks have to withstand are derived from an analysis of the on-site handling and emplacement procedures. Drop tests from different heights under consideration of the most damaging drop orientation and a stacking test are two examples for safety demonstrations that have to be performed during the container design testing procedure to qualify the respective container type. The containers, whether cubic or cylindrical containers, can be made from different materials like ductile cast iron, reinforced concrete or as welded construction from steel plates and profiles. In case of concrete containers the reinforcement has the function to absorb tensile forces the concrete is not able to withstand by its own. Because of manufacturing imperfections of cylindrical concrete waste containers manufactured already decades ago, the reinforcement cages are not always exactly, axisymmetrically positioned when they were poured. This inspired BAM to perform various ABAQUS finite-element (FE) simulations by using the example of a simplified cylindrical container design with generic dimensions and pure elastic material properties. As outcome the stress conditions in the container during the drop test impact under different drop positions and during the stacking test were investigated and are explained and illustrated in this contribution. Different reinforcement cage positions were calculated and compared. On the basis of the calculated tensile and compressive stress distributions suggestions are derived on how a cylindrical concrete container with an imperfectly placed reinforcement cage has to be oriented for a drop or stacking test to ensure the most damaging test scenario. T2 - ASME 2024 Pressure Vessels & Piping Conference CY - Bellevue, Washington, USA DA - 28.07.2024 KW - Container design testing procedure KW - Reinforced concrete containers KW - Drop test KW - Stacking test KW - Imperfectly mounted reinforcement cage KW - Finite-element-analysis PY - 2024 SN - 978-0-7918-8851-3 DO - https://doi.org/10.1115/PVP2024-123797 VL - 5 SP - 1 EP - 8 PB - ASME CY - New York City, USA AN - OPUS4-62558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven T1 - Numerical analysis of cask accident scenarios in storage facilities N2 - Existing spent nuclear fuel (SF) and high active waste (HAW) management policies and practices worldwide are the result of past presumptions that sufficient reprocessing and/or disposal capacity would be available in the near term. Consequently, in the past many countries have developed specific solutions for different periods of time due to their individual national nuclear policies. In Germany the concept of dry interim storage in dual purpose metal casks before disposal is being pursued for SF and HAW management and transport and storage licenses have been issued accordingly. The current operation licenses for existing storage facilities have been granted for a storage period of up to 40 years. This concept has demonstrated its suitability for over 20 years so far. Relevant safety requirements have been assessed for the short-term as well as for the long-term for site-specific operational and accidental storage conditions. But in the meantime significant delays in the national repository siting procedure occurred which will make extended storage periods necessary in the future. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Numerical analysis KW - Interim storage KW - Cask accident scenario PY - 2013 SP - Session H, Paper 202, 1 EP - 9 PB - Omnipress AN - OPUS4-30227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike T1 - Numerical Analysis of Cask Accident Scenarios in Storage Facilities T2 - Waste Management 2014 Conference, WM2014 CY - Phoenix, AZ, USA DA - 2014-03-02 PY - 2014 AN - OPUS4-30684 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven T1 - Numerical analysis of cask accident scenarios in storage facilities N2 - Mechanical drop test scenarios for Type B (U) packages according to the IAEA regulations have to be carried out onto the so-called “unyielding target” (usually with cask impact limiters) and onto the puncture bar respectively. They are predefined and do not require any further investigation of scenarios that really could happen on transportation routes. Cask accident scenarios in the framework of approval procedures for interim storage sites are derived from a detailed analysis of the handling procedures necessary from arrival of cask at the site to its storing position. In that case, casks are usually handled without impact limiters. Dependent on possible drop heights, drop positions and floor properties, conservative cask accident scenarios are derived for further safety proofs. According to the mechanical assessment concept of the considered approval procedure numerical calculations have to be provided by the applicant to demonstrate mechanical cask safety. Stresses and strains in the cask body as well as in the lid System have to be identified and assessed. Using the example of a 3-mvertical-drop of a transport and storage cask for spent fuel elements onto the floor construction made of damping concrete covered by screed, BAM developed a finite element model. The finite element code ABAQUS/Explicit™ was used. Results of experimental investigations are not available. Therefore parameter studies are necessary to identify the sensitivity of the finite element model to significant Parameters and to verify the finite element models according to the requirements of the Guidelines for the Numerical Safety Analyses for the Approval of Transport and Storage Casks for Radioactive Materials (BAM GGR-008). The paper describes the modeling of the material behavior and attachment of bottom side cask components. Questions concerning the modeling of a crack length limiting reinforcement in the screed layer are discussed. The influence of the mesh density of the screed layer and its strength is considered as well. Finally, the developed finite element model can be used for a numerical safety assessment. It can help to understand the complex mechanisms of the interaction between the cask components and floor construction. T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 02.03.2014 KW - Numerical analysis KW - Interim storage KW - Cask accident scenario PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14541, 1 EP - 12 AN - OPUS4-31516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Weber, Mike A1 - Völzke, Holger A1 - Kasparek, Eva Maria ED - Gomes, J.F.Silva ED - Meguid, S.A. T1 - Temperature dependendency of dynamically loaded polyurethane foam N2 - Polyurethane foam used as impact limiter material undergoes high plastic deformations, whereat the resulting stress-strain relations strongly depend on loading speed and temperature. This paper discusses the efforts necessary to develop a reliable numerical foam simulation model focussing on generation and implementation of temperature- dependent yield curves T2 - 6th International Conference on Mechanics and Materials in Design CY - Ponta Delgada, Azores, Portugal DA - 26.07.2015 KW - Impact limiter KW - Polyurethane foam KW - Finite element model KW - Strain rate KW - Temperature dependency PY - 2015 SN - 978-989-98832-3-9 SP - 1043 EP - 1046 PB - INEGI-FEUP AN - OPUS4-38889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Musolff, André T1 - Numerische Analyse der 1-m-Fallprüfung auf einen Stahldorn T2 - Jahrestagung Kerntechnik 2010 CY - Berlin, Deutschland DA - 2010-05-04 KW - IAEO KW - 1-m-Fallprüfung KW - Stahldorn KW - Numerische Analyse KW - Verifizierung PY - 2010 IS - Sektion 5 / 505 SP - 1 EP - 5 CY - Berlin AN - OPUS4-21292 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike T1 - Numerische Analyse der 1-m-Fallprüfung auf einen Stahldorn T2 - Jahrestagung Kerntechnik 2010 CY - Berlin, Germany DA - 2010-05-04 PY - 2010 AN - OPUS4-21260 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Qiao, Linan A1 - Weber, Mike A1 - Kovacs, Oliver A1 - Droste, Bernhard T1 - Application limits of low-ductile cast iron for radioactive waste containers T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 KW - Ductile iron KW - Container design KW - Safety assessment KW - Fracture mechanics KW - Dynamic loading conditions PY - 2007 IS - Session B, Paper #97 SP - 1 EP - 8 PB - Institute of Nuclear Materials Management AN - OPUS4-18399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike T1 - Numerical Analysis of IAEA Puncture Drop Test T2 - RAMTRANS 2009 CY - Manchester, England DA - 2009-05-12 PY - 2009 AN - OPUS4-19362 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Weber, Mike A1 - Qiao, Linan A1 - Menzel, Martin A1 - Droste, Bernhard T1 - Beurteilungsmethoden für Transport- und Lagerbehälter mit erhöhten metallischen Reststoffanteilen - Behälterbruchsicherheitsuntersuchungen und Entwicklung eines KONRAD-Referenzprüfstandfundamentes T2 - 9. Internationales Symposium "Konditionierung radioaktiver Betriebs- und Stilllegungsabfälle" (KONTEC 2009) CY - Dresden DA - 2009-04-15 KW - Duktiles Gusseisen KW - Behälterdesign KW - Sicherheitstechnische Bewertung KW - Bruchmechanik KW - Dynamische Belastungsbedingungen KW - KONRAD KW - Referenzprüfstandfundament PY - 2009 SP - 646 EP - 652 PB - KONTEC CY - Hamburg AN - OPUS4-19396 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -