TY - CONF A1 - Rhode, Michael T1 - Hydrogen diffusion in thick-walled S690 SAW joints: Part 2 - Predictive modeling of welding heat input and microstructure influence N2 - High-strength low-alloy (HSLA) steels such as S690 are widely employed in thick-walled welded structures, where hydrogen-assisted cold cracking (HACC) remains a persistent concern. While microstructure-specific hydrogen diffusion coefficients (DH) for weld metal (WM), heat-affected zone (HAZ), and base material (BM) were experimentally established in Part 1 of this study, their quantitative influence on hydrogen accumulation and effusion has not yet been fully clarified. This work presents a transient, spatially resolved numerical model for simulating hydrogen transport in multi-pass submerged arc welds. The model integrates experimentally determined DH values with realistic thermal cycles and temperature-dependent boundary conditions. Developed in Python, the simulation tool is purpose-built for hydrogen diffusion in welded joints and offers a focused, transparent alternative to general-purpose finite element platforms. Parametric analyses demonstrate that, although the diffusion coefficients vary by up to 50 %, their impact on overall hydrogen retention is minor. In contrast, welding parameters such as plate thickness, bead geometry, cooling time (t₈/₅), and interpass tem-perature exert a dominant influence on hydrogen distribution. Despite clear microstructural differences between the thermomechanically rolled (S690MC) and quenched and tempered (S690Q) variants, including hardness softening versus hardening in the heat-affected zone of the (pen)ultimate weld bead, the simulations confirm that their diffusion behavior and hydrogen solubility are closely aligned. Consequently, differences in diffusivity and solubility exert only a minor influence on hydrogen retention compared to thermal exposure and joint geometry. These findings support the interchangeable use of both steel grades in terms of HACC risk due to hydrogen diffusion kinetics, under comparable welding conditions. T2 - 78th IIW Annual Assembly, Meeting of Commission II-C CY - Genoa, Italy DA - 22.06.2025 KW - Hydrogen assisted cracking KW - Numerical simulation KW - Hydrogen diffusion PY - 2025 AN - OPUS4-63541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Characterization of hydrogen trapping in a CoCrFeMnNi high-entropy alloy charged up to 1000 bar high-pressure hydrogen N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s), see Fig. 1a to d. The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. In addition, the trap occupancy rate must be considered in terms of a pressure-related hydrogen absorption. The derived apparent hydrogen solubility was in the order: 316L < CoCrFeMnNi-HEA for both charging pressures. Especially, the 1,000 bar values lead to noteworthy results with > 70 wt.ppm for the AISI 316L and >130 wt.ppm for the CoCrFeMnNi. In fact, both the hydrogen diffusion and trapping data on gaseous high-pressure hydrogen charged HEAs are rare so far. The results of the present study allow a deeper understanding of hydrogen trapping in the regarded CoCrFeMnNi-system. T2 - 78th IIW Annual Assembly and International Conference CY - Genoa, Italy DA - 26.06.2025 KW - Hydrogen KW - Thermal desorption analysis KW - High-pressure charging KW - Trapping KW - Diffusion PY - 2025 AN - OPUS4-63542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Reparaturschweißen von zukünftigen in Betrieb befindlichen Wasserstoff-Pipelines N2 - Wasserstoff leistet als Energieträger der Zukunft einen entscheidenden Beitrag zur nachhaltigen Energieversorgung. Der Transport wird vorwiegend durch das europäische Ferngasleitungsnetz erfolgen. Bisherige Untersuchungen zeigen, dass bisher verwendete Rohrstähle grundsätzlich für den Wasserstofftransport geeignet sind. Diese Eignung ist nicht direkt auf Reparaturfragestellungen im Betrieb übertragbar, da Schweißungen aus technisch-ökonomischen Gründen oft unter fortwährendem Gasfluss durchgeführt werden. Ein im Erdgasnetz angewandtes Konzept ist das Anbohren druckführender Pipelines („Hot Tapping“). Dazu werden Zylinderhalbschalen zuerst durch Längs- und dann per Rohrrundnähten an die Pipeline geschweißt. Essenziell ist dabei die maßgeschneiderte Wärmeeinbringung, um das „Durchbrennen“ in die Pipeline zu vermeiden. Für zukünftige Wasserstoffpipelines liegt der Fokus u.a. auf dünnwandigen Leitungen. Im Gegensatz zu Erdgas, führen die beim Schweißen erreichten hohen Temperaturen an der Innenseite der Pipeline zu einer zusätzlichen Wasserstoffaufnahme in den Rohrstahl mit möglicher Materialdegradation. Zur praktischen Lösung der Fragestellung, sind internationale Aktivitäten im Gang. Diese umfassen bspw. die Möglichkeiten und Weiterentwicklung von realistischen Prüfkonzepten (u.a. durch maßstäbliche Bauteilversuche). Dazu untersucht die Bundesanstalt für Materialforschung und -prüfung (BAM) in einem DVGW-geförderten Kooperationsprojekt mit Gasnetzbetreibern, die Frage der Übertragbarkeit der Schweißkonzepte der Erdgastechnik auf zukünftiger Wasserstoffpipelines. T2 - DVS BV-Berlin / BAM Gemeinschaftsveranstaltung: Know-How-Transfer in der Fügetechnik: Forschung - Bildung - Fertigung CY - Berlin, Germany DA - 08.11.2024 KW - Schweißen KW - Wasserstoff KW - Pipelines KW - Hot-tapping KW - Bauteilversuch PY - 2024 AN - OPUS4-61589 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Mikrostrukturspezifische Wasserstoffdiffusion in UP-Schweißverbindungen hochfester Stahlgrobbleche N2 - Hochfeste Baustähle sind für den sogenannten, modernen Stahlleichtbau im Gebäude-, Anlagen- oder Mobilkranbau nicht mehr wegzudenken. Durch den Einsatz dieser Stähle mit Streckgrenzen ≥ 690 MPa können durch die Reduzierung der Wanddicke kann eine erhebliche konstruktive Gewichtsreduzierung erreicht werden. Dies führt zudem zu weiteren sekundären Vorteilen, wie geringeren Schweißverarbeitungskosten, da u.a. die zu füllenden Nahtquerschnitte kleiner sind. Für hochfeste Grobbleche kommt dabei insbesondere das Unterpulverschweißen (UP) zum Einsatz, das durch seine hohe Abschmelzleistung gekennzeichnet ist. Allerdings haben hochfeste Stahlgrobbleche aufgrund ihrer Mikrostruktur eine von vornherein begrenzte Duktilität ggü. niederfesten Stählen und sind per se anfälliger für verzögerte, wasserstoffunterstützte Kaltrissbildung Zudem führt die große Bleckdicke einerseits zu hoher konstruktiver Steifigkeit der Komponenten (mit der Folge erhöhter Eigenspannungen) und andererseits durch die dicken Schweißlagen zu langen Diffusionswege für den Wasserstoff, welcher bspw. durch feuchtes Schweißpulver in die Naht gelangen kann. Hieraus ergeben sich zwei Schwierigkeiten: (1) bis zu welcher Zeit mit einer verzögerten Rissbildung bei Raumtemperatur zu rechnen, wenn keine weitere Wärmebehandlung zur Reduktion des Wasserstoffes erfolgt bzw. (2) wenn diese notwendig ist, bei welche Temperatur dies erfolgen sollte. Dazu sind abgesicherte Diffusionskoeffizienten für den Wasserstoff in UP-Schweißungen notwendig, u.a. für numerische Simulationen. Diese Koeffizienten sind bisher nur äußert lückenhaft verfügbar. Aus diesem Grund wurden mikrostrukturspezifische, elektrochemische Permeationsversuche (nach ISO 17081) und Warmauslagerungsversuche mit TGHE an UP-Schweißverbindungen durchgeführt. Dazu wurden ein thermomechanisch (TM) gewalzter bzw. vergüteter (QT) Grundwerkstoff betrachtet, sowie das Schweißgut und die Wärmeeinflusszone (WEZ). Interessanterweise (und im Gegensatz zu Effekten des Wärmebehandlungszustandes auf die Diffusion in MSG-Schweißverbindungen) zeigten die UP-Schweißmikrostrukturen kaum signifikante Unter-schiede im Diffusionsverhalten von WEZ und Schweißgut. Dies ist auf den positiven Ef-fekt des mehrfachen Anlassens der Mikrostruktur durch die Mehrlagenschweißung zu-rückzuführen. Aus praktischer Anwendersicht können daher dickwandige UP-Verbindungen ausschließlich anhand der einfach ermittelbaren Diffusionskoeffizienten für den Grundwerkstoff beurteilt werden. Zudem zeigte sich, dass der Walzzustand (QT vs. TM) in Grobblechen gegenüber Dünnblechen eine untergeordnete Rolle für die Wasserstoffdiffusion bildet. Ergänzende numerische Simulationen zeitabhängigen Wasserstoffdiffusion bestätigten das Verhalten. T2 - DGM Arbeitskreis Wasserstoff CY - Neu-Isenburg, Germany DA - 26.05.2025 KW - Wasserstoff KW - Kaltrissbildung KW - Diffusion KW - Numerische Simulation KW - Permeation PY - 2025 AN - OPUS4-63235 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Thickness and microstructure effect on hydrogen diffusion in creep-resistant 9 % Cr P92 steel and P91 weld metal N2 - Martensitic 9 %-Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. The small number of available diffusion coefficients varies already at room temperature by several orders of magnitude (mostly regarded as result of present microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. The diffusion coefficients are calculated by two methods (time-lag and inflection point method) were performed. The results show that, despite of microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. T2 - IIW Intermediate Meeting, Comm. IX-C "Welding of creep and heat-resistant materials" CY - Online meeting DA - 08.03.2021 KW - Hydrogen KW - Welding KW - Diffusion KW - Creep-resistant steel KW - Electrochemical permeation PY - 2021 AN - OPUS4-52239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - HEA Processing - SURDIA - Current R&D at BAM N2 - This presentation summarizes the latest results on the BAM-Themenfeld project SURDIA on processing of high-entropy alloys (HEAs) at BAM. At first, the influence of machining by ultrasonic-assisted milling on the surface integrity is presented. Second, the weld processing by Tungsten Inert Gas (TIG) welding is presented and the results of the Friction Stir Welding (FSW), which is conducted at BAM for the first time. T2 - DFG SSP 2006 - Subgroup meeting on the synthesis and processing of CCAs/HEAs CY - Online meeting DA - 08.10.2021 KW - High-entropy alloy KW - Ultrasonic-assisted milling KW - Welding KW - Processing KW - Surface integrity PY - 2021 AN - OPUS4-53497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Friction stir welding of a CoCrFeMnNi high entropy alloy compared to AISI 304 austenitic stainless steel: evolution of microstructure and mechanical properties N2 - High entropy alloys (HEA) are a new class of materials. In contrast to conventional alloys, HEA are single-phase alloys with at least five alloying elements. HEAs have enormous application potential due to (postulated) excellent structural property combinations from low to high temperatures. For HEA-application as structural materials in real components, a key issue is the suitability for joining processing. Requirements for the reliable and safe joining of these materials are crucial regarding economical component manufacture for future applications. In this context, friction stir welding (FSW) is a promising joining process due to the welding process temperature below the material melting point avoiding major issues, e. g. formation of (hard and brittle) intermetallic phases, which may have detrimental influences on the weld joint properties. This study presents elementary research about the FSW process influences on a CoCrFeMnNi-HEA with focus on the microstructure and mechanical properties. For that purpose, the FSW joint of the HEA is compared to that of an austenitic stainless steel AISI 304. The microstructures of the welds were investigated and characterized by means of light microscopy, SEM, EBSD and XRD. Hardness and tensile testing were applied to determine influences on the mechanical properties. Generally, a comparable weldability of HEA and AISI 304 in terms of metallurgical characteristics and resulting mechanical properties exhibited. For the weld joints of both materials typical characteristics regarding FSW were observed within the weld metal and thermo-mechanically influenced zone: fine-grained stirred zone with increased hardness and reduced fracture elongation compared with the respective base material. T2 - Bachelor-, Master-, Doktoranden-Kolloquium CY - Magdeburg, Germany DA - 20.10.2021 KW - High Entropy Alloy KW - Friction stir welding KW - Austenitic stainless steel PY - 2021 AN - OPUS4-53608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Diffusion in high-pressure hydrogen charged multi-principal element alloys CoCrFeMnNi and CoCrNi vs. AISI 316L N2 - Multi-principal element alloys (MPEAs) are innovative materials that have attracted extensive research attention within the last decade. MPEAs are characterized by a solid solution of equiatomic metallic elements. Depending on the number of elements, they are also referred as high entropy alloys (HEAs with n ≥ 4 elements like CoCrFeMnNi) and medium-entropy alloys (MEA with n = 3 elements CoCrNi). Depending on the alloy concept, MPEAs show exceptional properties in terms of mechanical performance or corrosion resistance at extreme environments. In that connection, hydrogen and its challenges for the most metallic materials gets more and more important. MPEAs are candidate materials for the substitution of conventional materials like austenitic stainless steels e.g., at very high-pressure up to 1000 bar. Those pressures are typically reached in valves or compressors for refueling of tanks with operational pressure of 700 bar. So far, the susceptibility of HEA/MEAs to hydrogen assisted cracking (if any) and the especially the underlying hydrogen uptake and diffusion was not within the scientific scope and not investigated in detail yet. For that reason, we focused on the hydrogen absorption the characterization of the hydrogen diffusion and trapping at elevated temperatures in a CoCrFeMnNi-HEA (each element with 20 at.-%) and CoCrNi-MEA, each element with 33.3 at.-%). As reference grade, the commercially available austenitic stainless steel AISI 316L was investigated. High-pressure hydrogen charging was conducted at different pressures in autoclave environment with maximum value of 1,000 bar. Thermal desorption analysis (TDA) via carrier gas hot extraction with coupled mass spectrometry was used with a max. heating rate of 0.5 K/s up to 650 °C. The measured desorption spectra of the different samples were deconvoluted into a defined number of individual peaks. The individually calculated peak temperatures allowed the definition of activation energies for predominant trap sites in the respective materials as well as the percentage share of the totally absorbed hydrogen concentration. The results present for the first time the complex interaction of both MPEAs and high-pressure hydrogen charging. A deconvolution of four peaks was selected and a main desorption peak was identified the dominant hydrogen trap containing the biggest share of the absorbed hydrogen concentration. The chemical composition an austenitic phase of both MPEAs is responsible for delayed hydrogen diffusion and strong, but mostly reversible, trapping. The comparison with the 316L samples showed significantly higher activation energies in the MPEAs, whereas hydrogen was also trapped at very high extraction temperatures. The absorbed maximum hydrogen concentration at 1,000 bar was 130 ppm for the CoCrFeMnNi-HEA, 50 ppm for the CoCrNi-MEA and 80 ppm for the 316L. It is interesting that the CoCrFeMnNi-HEA has obviously a way higher trapping capability compared to the conventional austenitic 316L, which could be a major advantage in terms of resistance to hydrogen assisted cracking. T2 - 47th MPA-Seminar CY - Stuttgart, Germany DA - 10.10.2023 KW - High-entropy alloy KW - Hydrogen KW - Diffusion KW - Thermal desorption analysis KW - Multiple-principal element alloy PY - 2023 AN - OPUS4-58675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Local mechanical properties of TIG dissimilar metal welded CoCrFeMnNi high-entropy alloy to austenitic steel AISI 304 N2 - Multiple principal element alloys (MPEA) encompass the well-known high entropy alloys (HEAs). MPEA/HEA represent a new class of materials consisting of at least three alloying elements, each containing 5 to 35 at.-%. This alloying concept thus differs fundamentally from conventional materials such as steel or nickel alloys. For this purpose, the alloying elements are specifically selected, and the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. In particular, conflicting goals, such as the trade-off between strength and ductility in conventional steels, are overcome. In the last 20 years, however, the focus has been on material synthesis. With the increase in available material quantities, the focus is now on pro-cessing issues such as joining and welding processes. The weldability of MPEA has received very little atten-tion so far. Experience with dissimilar metal welds (DMWs) is completely lacking but is essential for the appli-cation of these materials in combination with conventional materials. The present study presents, comprehen-sive experimental results on the weldability of MPEA-DMWs. For that purpose, a Co20Cr20Fe20Mn20Ni20 HEA in cold-rolled and heat-treated condition was joined by means of tungsten inert gas welding (TIG) with the austenitic Cr-Ni steel AISI 304. The DMWs resulted in interesting mechanical properties. They were obtained by instrumented tensile tests as well as the local deformation in the weld area by using digital image correlation (DIC) technique. A significant softening in the heat-affected zone (HAZ) of the MPEAs as well as a slightly reduced tensile strength with a significant decrease of the elongation at fracture were found. The experiments provided proof in principle of the weldability of the MPEAs for DMWs with conventional materials that ensure a corresponding capability for mechanical loading. This allows further considerations on the application of these innovative materials. T2 - IIW Annual Assembly, Meeting of Commission C-II CY - Singapore DA - 18.07.2023 KW - High-entropy alloy KW - Welding KW - Microstructure KW - Mechanical properties KW - Dissimilar metal weld PY - 2023 AN - OPUS4-57978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Vereinfachte Prüfmethode zur Bewertung der Gefahr wasserstoffunterstützter Kaltrisse (HACC) beim Lichtbogenschweißen hochfester Stähle N2 - Die Präsentation gibt einen Kurzüberblick über die Versuchsmethodik und den erreichten Projektfortschritt des IGF-Projektes 01IF22624N bzw. DVS-Nr. 01.3410. Ziel der Untersuchungen ist eine Methodik für eine vereinfachte Probenform zur Bewertung der Kaltrissanfälligkeit durch Wasserstoff bei hochfesten, geschweißten Stählen. Dazu wird ISO 3690 (Quantifizierung des H-Gehaltes) mit direkt prüfbaren Querzugproben kombiniert, die die realistische Bewertung der Schweißnaht unter industriepraktischen Parametern ermöglicht. T2 - Sitzung des NA 092-00-05 GA Gemeinschaftsarbeitsausschuss NAS/NMP: Zerstörende Prüfung von Schweißverbindungen (DVS AG Q 4/Q 4.1) CY - Online meeting DA - 20.03.2025 KW - Schweißnaht KW - Kaltrissbildung KW - Wasserstoff KW - Prüfung KW - ISO 3690 PY - 2025 AN - OPUS4-62759 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Development of a component test for assessment of delayed hydrogen assisted cracking susceptibility of thick walled submerged arc welded high strength offshore steels N2 - Offshore Wind Turbines (OWT) are a key factor in tomorrow's sustainable energy generation. The ever-increasing installation depth and weight of OWTs require suitable foundation concepts such as monopiles or tripods. Typically, mild steels such as S420ML are used with plate thicknesses of up to several hundred mm, resulting in high restraints in the welded joints. The large plate thickness requires high-efficiency welding processes such as submerged arc welding (SAW) with multiple wires. Due to the very high stiffness and plate thickness of the large-scale offshore structure, a susceptibility to time-delayed hydrogen assisted cracking (HAC) may occur. The evaluation of this crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e. workshop) scale. The 350 kg mock-up studied consisted of heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged-arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated by using flux in dry (HD < 5 ml/100g Fe) and wet (HD > 15 ml/100g Fe) conditions. Weld residual stresses were determined using a robotic X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and in the heat affected zone, suggesting that these weld sub-zones are the most critical in the case of hydrogen ingress. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after welding, 6 h, 12 h, 24 h, and a maximum of 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and parameters. T2 - MSE 2024: International Materials Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - Hydrogen KW - Offshore wind turbine KW - Component test KW - Submerged arc welding KW - Minimum waiting time PY - 2024 AN - OPUS4-61154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Assessment of in-service welding conditions for pressurized hydrogen pipelines via component test N2 - Hydrogen is the energy carrier of tomorrow. This requires a reliable transport infrastructure with the ability to carry large amounts of hydrogen e.g. for steel industry or chemical industry. The conversion of existing natural gas (NG) grids is an essential part of the worldwide hydrogen strategies, in addition to the construction of new pipelines. In this context, the transportation of hydrogen is fundamental different from NG as hydrogen can be absorbed into the pipeline material. Given the well-known effects of hydrogen embrittlement, the compatibility of the materials for the intended pipelines must be investigated (typically low alloy steels in a wide range of strengths and thicknesses). However, pipelines require frequent maintenance, repair or the need for installation for further outlets. In some cases, it is necessary to perform welding on or onto the pipelines while they are still in service, i.e. with active gas flow under high pressure, e.g. such as the well-known “hot tapping”, see Fig. 1a. This in-service welding causes challenges for hydrogen operations in terms of additional hydrogen absorption during welding and the material compatibility. The challenge can be roughly divided into the possible austenitization of the inner pipe material exposed to hydrogen, which can lead to sufficient hydrogen absorption, and the welding itself, which causes an increased temperature range. Both lead to a significant increase in hydrogen solubility and diffusivity of the respective materials compared to room temperature. In this context, knowledge about hot tapping on hydrogen pipelines is scarce due to the lack of operating experience. Fundamental experimental investigations are required to investigate the transferability from NG to hydrogen pipeline grids. For this reason, the present study introduces a specially designed mock-up / demonstrator concept for the realistic assessment of the welding processing conditions, see Fig. 1b. The mock-up was designed to enable in-situ temperature measurement during welding as well as ex-post extraction of samples for the quantification of the absorbed hydrogen concentration, see Fig. 1c. For safety measures, the necessary pressurized hydrogen volume was limited by the insertion of a solid cylinder ensuring a 1 cm hydrogen gas layer. Welding experiments on the pressurized mock-ups with the diameters DN50 and DN200 have shown that the austenitization temperature can be reached on the inner surface of the pipeline, especially on thinner-walled pipelines, using current welding practices. This corresponds to an increased hydrogen uptake in the welded area of several ppm T2 - 1st Conference on Hydrogen in Materials Science and Engineering (H2-MSE) CY - Siegburg, Germany DA - 11.02.2025 KW - Hydrogen KW - Pipeline KW - In-service welding KW - Component test PY - 2025 AN - OPUS4-62544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Residual Stresses in Multi-Layer Component Welds T2 - 5th International Conference on Trends in Welding Research CY - Chicago, IL, USA DA - 2012-06-04 PY - 2012 AN - OPUS4-26607 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa are gaining popularity in civil engineering and construction of heavy vehicles. With increasing yield strength, the susceptibility for degradation of the mechanical properties in presence of diffusible hydrogen, i.e. hydrogen-assisted cracking (HAC) generally increases. HAC is a result of the critical interaction of local microstructure, mechanical load and hydrogen concentration. In existing standards for welding of HSLA steels, recommendations (preheating, interpass temperature and hydrogen removal heat treatment) are given to limit the amount of introduced hydrogen during welding. The recommendations are based on investigations with conventional arc welding processes. In the past decade, modern weld technologies were developed to enable welding of narrower weld seams with V-grooves of 30°, e.g. the modified spray arc process. In that connection, a reduced number of weld runs and weld volume are important technical and, hence, economic benefits. In the present study, the hydrogen distribution in S960QL multi-layer welds with thickness of 20 mm was analyzed depending on heat control. The influence of different weld seam opening angles (grooves), heat input, interpass temperature and hydrogen removal procedures was investigated. The results show that weldments with narrow groove contained increased diffusible hydrogen amount. Reasons had been longer diffusion path and higher wire feeding rate compared to conventional welds with wider 60° Vgroove. Hydrogen concentration has been reduced by decreasing both the heat input and interpass temperature. Hydrogen free weldments were achieved via hydrogen removal heat treating at 250 °C for 5 h subsequently after welding. Regarding the strength of the investigated steel, it is recommended to conduct a heat treatment after welding. For the first time, hydrogen concentration gradients were experimentally determined across the weld seam thickness in HSLA multi-layer welds. T2 - Intermediate Meeting of IIW Commission II-A CY - Genoa, Italy DA - 05.03.2018 KW - Hydrogen assisted cracking KW - Welding KW - Heat control KW - High-strength steel PY - 2018 AN - OPUS4-44426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Specimen temperature during CGHE and influence on hydrogen determination N2 - Hydrogen determination in weld seams is standardized in ISO 3690. In accordance to this standard, a defined time for hydrogen collection has to be anticipated for different extraction temperatures. In other words, the temperature is the most important value that has to be monitored in addition to the aimed hydrogen determination. The specimen geometry has influence on the real sample temperature during CGHE vs. the adjusted furnace temperature. This presentation gives a short summary on possible influences on the "correct" hydrogen determination temperature during carrier gas hot extraction (CGHE) using infrared radiation driven furnace. The main findings are: (1) specimen surface is important in terms of polished or oxidized condition, (2) specimen geometry is important for fast heating, (3) PID-values of control software are a considerable influence to accelerate the heating process depite thick specimens and (4) independent sample temperature determination before CGHE is strongly recommended. T2 - Intermediate Meeting of IIW Subcommission II-E CY - Genoa, Italy DA - 05.03.2018 KW - Hydrogen KW - Welding KW - Carrier gas hot extraction KW - Temperature KW - Measurement PY - 2018 AN - OPUS4-44427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Microalloying influence on precipitation behavior and mechanical properties of welded high strength structural steels N2 - Microalloying elements, such as Nb and Ti, are essential for the targeted mechanical strength of quenched and tempered, high-strength fine-grained structural steels with a nominal yield strength ≥ 690 MPa. Current specifications for chemical composition only provide upper limits for manufacturers. But even small deviations in the alloying route can have a drastic effect on the mechanical properties. Thus, an adequate prediction of the weldability and the integrity of the welded joint becomes difficult or even impossible due to the varying composition and, hence, the microstructures. Undesirable side effects are the possible softening of the heat-affected zone (HAZ) as well as the opposite effect of hardening. Against this background, different microalloying routes with varying Ti and Nb contents are systematically investigated for the first time on specially designed lab-cast alloys. The basis of each alloy route was the common S690QL in terms of both the chemical composition as well as the heat treatment. To investigate the weldability, three-layer welds were performed using metal active gas welding (MAG) and critical microstructural areas with high softening/hardening were identified. The scope was here on the identification of phase transformations during cooling and on the respective metallurgical precipitation behavior. Isothermal and non-isothermal phase calculations were performed using Thermo-Calc® and showed that the prediction of the non-equilibrium precipitation characteristics during welding is not trivial, especially for this relatively complex chemical composition. The mechanical properties of the welded joints were identified by both Charpy tests (toughness) and tensile tests (strain and strength). During the test, the local straining behavior of the welded joints, was identified using a digital image correlation (DIC) system, see Figure 1. Despite the generally good weldability of the materials, the results show a significant influence of the microalloying route as well as the welding heat input on the different precipitation kinetics. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - High-strength KW - Steel KW - Mechanical properties KW - Welding KW - Thoughness PY - 2023 AN - OPUS4-58221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Determination of inner pipe surface temperatures during in-service welding on hydrogen pipelines by means of component-like mock up experiments N2 - Hydrogen is considered as one of the most important energy carriers in the future. The necessary large-scale transport over long distances requires a suitable pipeline infrastructure. Current plannings encompass a dual-way strategy of repurposing existing natural gas (NG) pipelines, supplemented by the construction of new hydrogen pipelines. In some cases, such as necessary grid extensions or installation of bypasses in case of repair work, techniques like “hot tapping” are applied. These techniques include so-called in-service welding on pressurized pipelines and are state-of-the-art for NG grids and oil pipelines. The existing NG pipeline grid consists of a wide range of materials with different strengths, diameters, and wall thicknesses. In this context, the material compatibility is crucial. The main difference between hydrogen and NG is that hydrogen can both penetrate the material and cause hydrogen embrittlement. In that connection, in-service welding encompasses elevated temperatures for a certain time during the typically multi-layer welding process. Locally even austenitization temperature can be reached or surpassed. Austenite has a higher hydrogen solubility at a significantly lower diffusion rate, which could lead to a critical hydrogen accumulation. Especially the inner pipe surface temperature is from utmost interest, as this interface is exposed to the pressurized hydrogen (up to 100 bar). However, direct measurement of the locally occurring temperatures is very challenging. For this reason, a component-like geometry was developed. The geometry consists of a pipeline segment with a metal sheet joined to the pipe segment, representing similar heat dissipation conditions as in the field. In addition, typical welding parameters were applied that are currently used in the NG grid. This allows the welding of realistic multi-layer fillet welds on the outer pipe wall with simultaneous temperature measurement using manifold thermocouples at defined positions: (1) adjacent to the weld seam on the outer pipe surface, (2) on the inner pipe surface and (3) on the welded metal sheet. To ensure realistic conditions, manual shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) was investigated. The effects of different wall thicknesses and welding heat inputs on the temperature distribution and peak temperatures achieved on the inner pipe surface during welding vary depending on the chosen method. Peak temperatures above austenitization temperature up to 1078 °C have been measured on L245 pipes with wall thickness of 3.6 mm. For pipes made from higher strength materials, such as L485, with a wall thickness of 8 mm, peak temperatures between 607 °C and 755 °C were recorded. Temperature and austenitization directly affects hydrogen diffusivity and solubility, showing the importance of the findings. The temperature profile and cooling conditions influence the mechanical properties of the material as well. For this reason, metallurgical investigations are carried out to assess the hardness and microstructure of the welds. Hardening up to 248 HV10 was detected in the heat-affected zone (HAZ) of the top layer, which could lead to a locally increased susceptibility to hydrogen assisted cracking. Meanwhile, the minimum hardness found in the HAZ of the root layer was as low as 144 HV10, indicating a softening. The results of this study provide valuable insights into the suitability of existing materials and geometries for hydrogen transport. Secondly, the data collected will serve as a basis for planned numerical simulations to further improve knowledge and optimize welding processes to ensure the integrity and safety of hydrogen pipelines. T2 - IIW Intermediate Meeting, Com. II-A CY - Trollhättan, Sweden DA - 10.03.2025 KW - Testing KW - In-service welding KW - Hydrogen KW - Pipelines PY - 2025 AN - OPUS4-62690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Influence of various microalloying strategies on the mechanical properties of weld seams in S690QL steel N2 - Microalloying elements such as niobium (Nb) and titanium (Ti) play a crucial role in achieving the desired mechanical properties of quenched and tempered high-strength fine-grained structural steels with a nominal yield strength of ≥ 690 MPa. Current specifications for the chemical composition only define upper limits for these elements, providing manufacturers with some flexibility. However, even minor deviations in alloying concepts can significantly influence the resulting mechanical properties. Consequently, accurately predicting weldability and the integrity of welded joints becomes challenging or even unfeasible due to variations in composition and the associated microstructural changes. Potential adverse effects include the softening of the heat-affected zone (HAZ) or, conversely, localized hardening phenomena. To address these challenges, various microalloying strategies with different Ti and Nb contents are being systematically investigated for the first time using specially designed laboratory-cast alloys. Each alloying approach is based on the commonly used S690QL steel grade while maintaining consistent chemical composition and heat treatment parameters. To evaluate the weldability, three-layer welds were produced using gas metal arc welding (GMAW), and critical microstructural regions, particularly those within the heat-affected zone (HAZ) exhibiting significant softening or hardening, were identified. The influence of the softened HAZ region on failure behavior was assessed through transverse tensile testing. Digital image correlation (DIC) was employed for in situ analysis of local strain distributions across different HAZ regions. In addition, Charpy tests were carried out on BM, WM and HAZ to determine the Charpy impact toughness. This was supported by metallographic analyses and thermodynamic simulation using ThermoCalc. T2 - IIW Intermediate Meeting, Com. II-A CY - Trollhättan, Sweden DA - 10.03.2025 KW - Welding KW - Microalloy elements KW - High strength steels KW - Mechanical properties PY - 2025 AN - OPUS4-62691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Microstructure and local mechanical properties of friction stir welded dissimilar joints of CoCrFeMnNi and CoCrNi to austenitic steel AISI 304 N2 - Multiple principal element alloys (MPEA) represent a meanwhile widely investigated material class, which encompass high-entropy (HEA) and medium-entropy alloys (MEA). They are fundamentally different from conventional materials like Fe-Cr-Ni-based austenitic steels. However, the focus has been merely on the material synthesis. With the increase in available material quantities, the focus is now shifting to processing issues such as joining and welding. In this context, the weldability of MPEAs has received very little attention so far. In addition, MPEA/HEA/MEA are and will be expensive due to the alloying concept. From this point of view, also such materials will also have to be joined with other conventional materials like austenitic steels. In particular, there is a lack of experience with dissimilar metal welds (DMWs) and the corresponding mechanical properties. For this reason, the present study summarizes comprehensive experimental results on equiatomic CoCrFeMnNi (HEA) and CoCrNi (MEA), joined by solid-state friction stir welding (FSW) to an austenitic steel AISI 304. The mechanical properties were obtained by cross-weld tensile tests. For the first time (for these welding process and materials), the local strains in the different weld microstructures were measured in-situ by digital image correlation (DIC). A significant influence of the FSW process on both the resulting microstructure and the mechanical performance of the DWMs was identified. For example, the dynamic recrystallization plays a significant role in the performance of the welded joint. In addition, the FSW experiments proofed the weldability of both MPEAs when joined to austenitic steel AISI 304. This allows for further focused consideration of these highly innovative MPEAs. T2 - MSE 2024: International Materials Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - High-entropy alloy KW - Dissimilar metal weld KW - Microstructure characterization KW - Mechanical properties KW - Friction stir welding PY - 2024 AN - OPUS4-61157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Update on "Call for interested people to contribute to series of comprehensive papers on welding and joining of components for sustainable energy systems" N2 - Based on the initial call in March 2024, an update time-frame is introduced on the working plan for a comprehensive review paper series on joining and welding technologies for the manufacturing of components and parts used in sustainable energy generation, conversion, and transport with focus on hydrogen and wind energy. T2 - 77th IIW Annual Assembly and International Conference, Meeting of Commission II-A CY - Ixia, Rhodes, Greece DA - 07.07.2024 KW - Review paper KW - Research study KW - Hydrogen KW - Joining KW - Welding PY - 2024 AN - OPUS4-60674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component test for simplified testing of hydrogen‐assisted delayed cold cracking of high‐strength, submerged arc‐welded offshore steel structures N2 - Offshore Wind Turbines (OWT) are a key factor in tomorrow's sustainable energy generation. The ever-increasing installation depth and weight of OWTs require suitable foundation concepts such as monopiles or tripods. Typically, mild steels such as S420ML are used with plate thicknesses of up to several hundred mm, resulting in high restraints in the welded joints. The large plate thickness requires high-efficiency welding processes such as submerged arc welding (SAW) with multiple wires. Due to the very high stiffness and plate thickness of the large-scale offshore structure, a susceptibility to time-delayed hydrogen assisted cracking (HAC) may occur. The evaluation of this crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e. workshop) scale. The 350 kg mock-up studied consisted of heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged-arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated by using flux in dry (HD < 5 ml/100g Fe) and wet (HD > 15 ml/100g Fe) conditions. Weld residual stresses were determined using a robotic X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and in the heat affected zone, suggesting that these weld sub-zones are the most critical in the case of hydrogen ingress. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after welding, 6 h, 12 h, 24 h, and a maximum of 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and parameters. T2 - MPA Seminar 2024 - Materials, Processes, Applications CY - Stuttgart, Germany DA - 08.10.2024 KW - Hydrogen KW - Offshore wind turbine KW - Component test KW - Submerged arc welding KW - Minimum waiting time PY - 2024 AN - OPUS4-61323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Evaluation of the wear protection of modified NiMoCrSi alloy and machinability using ultrasonic-assisted milling N2 - The development of technologies for climate-neutral energy generation is an important contribution to reducing CO2 emissions, whereby the efficient use of material systems is a key factor. Wear-resistant coatings are required for highly efficient and economical steel components in energy, process and power plant engineering in order to withstand the high corrosive, tribological, thermal and mechanical loads. Considering price and supply risks as well as the increasing demands on corrosive resistance at high temperatures, conventional cobalt alloys are to be replaced by nickel alloys. In addition, there is a growing demand for defined surfaces of high quality or functional surfaces of these protective coatings. The milling required for this is often not economically feasible, especially for SMEs, due to high tool wear. A joint project of BAM and ISAF of TU Clausthal (Fosta P1550/IGF 21959 N) investigates the optimization of these challenging machining conditions by means of alloy modifications of the welding powder for plasma transferred arc cladding, without reducing the wear protection potential and using innovative ultrasonic assisted milling process for better machinability without reducing wear resistance. This article presents the results of investigations into the relationships between different alloy modifications (Ti, Al, Nb Mo and Hf with wX ≤ 0.01), the resulting microstructure and precipitation morphology, the machinability and the wear protection properties using a NiCrMoSiFeB alloy (trade name: Colmonoy 56 PTA). Tests using cast samples have already shown that the addition of Nb leads to a finer distribution of the hard phases and that this results in a reduction in cutting forces and tool wear during ultrasonic-assisted milling. The change in the microstructure morphology through the addition of Al, on the other hand, causes a significant increase in the cutting forces that occur. T2 - IIW Intermediate meeting of Commission II-A CY - Online meeting DA - 12.03.2024 KW - Ultrasonic assisted milling KW - Surface integrity PY - 2024 AN - OPUS4-61924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Bericht zum Fortschritt des Projektes "Entwicklung von Wärmenachbehandlungskonzepten zur Vermeidung von Spannungsrelaxationsrissen" zur Sitzung des FA1 N2 - Dieses Dokument fasst den Projekfortschritt des BAM-Projektes "Entwicklung von Wärmenachbehandlungsstrategien zur Vermeidung von Spannungsrelaxationsrissen" im Rahmen des Fachausschusses 1 "Schweißmetallurgie" des DVS e.V. T2 - Sitzung des FA1 "Schweißmetallurgie" der Forschungsvereinigung Schweißen und verwandte Verfahren des DVS e.V. CY - Online meeting DA - 26.10.2021 KW - Spannungsrelaxationsrisse KW - Forschung KW - Schweißen KW - Wärmenachbehandlung PY - 2021 AN - OPUS4-53647 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Schweißen im Wasserstoffanlagen- und Behälterbau - Eine Kurzübersicht N2 - Wasserstoff erfüllt die zentrale Rolle für die Umwandlung der bisherigen fossil-basierten Energieerzeugung und -nutzung auf eine dekarbonisierte, nachhaltige Form. Dazu muss der Wasserstoff erzeugt, gespeichert, transportiert werden, bevor er wieder der Nutzung zugeführt wird. Hierzu sind entlang der gesamtem Prozesskette Wasserstofftechnologien notwendig, die einen sicheren Betrieb erfordern. Hierbei kommt dem schweißtechnischen Anlagen- und Behälterbau wesentliche Bedeutung zu, insbesondere (aber nicht ausschließlich) für Speicherung und Transport des Wasserstoffes. Der vorliegende Beitrag gibt einen kurzen Überblick, wo und wie die konventionelle Schweißtechnik hierzu wichtige Beiträge leistet. Die additive Fertigung, also das „Drucken“ von Bauteilen wird dabei zunehmend wichtiger, entlang der gesamtem Prozesskette der Wasserstofftechnologien. Gleichwohl darf nicht unterschätzt werden, dass auch wesentlicher Bedarf an der Erweiterung und teilweiser Neufassung von bestehenden Regel- und Normenwerken besteht. T2 - 51. Sondertagung "Schweißen im Behälter- und Anlagenbau" CY - Munich, Germany DA - 28.02.2023 KW - Wasserstoff KW - Fügetechnik KW - Schweißen KW - Studie PY - 2023 AN - OPUS4-57076 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroeder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Ausscheidungsverhalten und Eigenschaften der schweißbedingten Wärmeeinflusszonen hochfester Stähle in Abhängigkeit der Mikrolegierungsroute N2 - Für eine signifikante Festigkeitssteigerung von vergüteten, hochfesten Feinkornbaustäh-len mit einer Nominalstreckgrenze ≥ 690 MPa, ist die Zugabe von Mikrolegierungselementen, wie Nb und Ti, unerlässlich. Die Normvorgaben zur chemischen Zusammensetzung dieser Stähle (bspw. in DIN EN 10025-6) geben zur Erzielung der vorgeschriebenen Eigenschaften dabei oft nur Grenzgehalte für die Hersteller vor. Die Wirkung der Legierungselemente in der WEZ ist teilweise komplett konträr. Somit wird eine adäquate Vorhersage der Chargenabhängigkeit hinsichtlich der Schweißeignung und des Tragver-haltens der Schweißverbindung erschwert. Neben metallographischen Untersuchungen einzelner WEZ-Bereiche wurden unter Variation der chemischen Zusammensetzung, thermodynamische Phasenberech-nungen mittels ThermoCalc durchgeführt. Hierdurch wird ein Verständnis zur Phasentransformation, Aus-scheidungswachstum und -auflösung während des Schweißens in Abhängigkeit von Temperatur und Ab-kühlbedingungen geschaffen. T2 - Forschungsseminar BAM, BMDK CY - Magdeburg, Germany DA - 05.12.2022 KW - WEZ-Erweichung KW - Thermodynamische Simulation KW - Mikrolegierungseinfluss KW - Hochfester Feinkornbaustahl KW - Modifizierter Sprühlichtbogen PY - 2023 AN - OPUS4-56837 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Rhode, Michael T1 - Fügetechnik in Wasserstofftechnologien - Forschungsbedarf für die Branche N2 - Die Studie gibt einen kurzen Überblick über die jetzige Bedeutung der Fügetechnik in Wasserstofftechnologien und über zukünftige Forschungsbedarfe für die Branche in den einzelnen Technologiefeldern Wasserstofferzeu-gung, -speicherung, -transport und -nutzung. Fügetechnologien haben dabei wesentliche Bedeutung für die er-folgreiche Umsetzung von technischen Komponenten der Wasserstofftechnologien. Die Schwerpunkte bzw. For-schungsbedarfe ergeben sich bspw. durch die Erstellung neuer Infrastruktur für Wasserstoffspeicherung und -transport sowie durch Umnutzung der bestehenden Erdgasinfrastruktur. Bei der Wasserstofferzeugung und -anwendung wird z.B. die Entwicklung effiziente Massenproduktionsmethoden von Elektrolyseuren und Brennstoff-zellen einen wichtigen Meilenstein bilden und laserbasierte Fügetechnologien sind hier zum Teil schon etabliert. Die additive Fertigung nimmt dabei eine Querschnittsposition ein und besitzt hohes Anwendungspotential für die Zukunft z.B. für die Fertigung von Komponenten in Gasturbinen. Aus den technischen Fragestellungen und For-schungsbedarfen ergeben sich zudem Herausforderungen für die notwendige Neu- und Weiterentwicklung von technischen Regelwerken und Normen und den Eingang in die Aus- und Weiterbildung von fügetechnischem Fachpersonal. T2 - DVS Congress 2021 CY - Essen, Germany DA - 14.09.2021 KW - Wasserstoff KW - Fügetechnik KW - Forschung KW - Technologie PY - 2021 AN - OPUS4-53321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Joining Processes in Hydrogen Technologies - Current need and future R&D activites, a review N2 - This study gives an overview on the important field of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the different technological field of hydrogen generation, storage, transport and use. In addition, the emerging field of additive manufacturing is included. Finally, some remarks are given for necessary changes in the standardization and its challenges. T2 - 46th Seminar - Additive Manufacturing, Hydrogen, Energy, Integrity CY - Online meeting DA - 12.10.2021 KW - Hydrogen KW - Joining process KW - Welding KW - Review KW - Research and Development PY - 2021 AN - OPUS4-53554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Joining processes for components in hydrogen technologies: Current need and future importance N2 - This presentation gives an overview on the importance of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the three technological fields: hydrogen storage, transport and use (in terms of the emerging field of additive manufacturing). Finally, some remarks are given for necessary changes in the standardization. T2 - IIW Intermediate Meeting, Comm. II-A "Welding Metallurgy" CY - Online meeting DA - 17.03.2022 KW - Hydrogen KW - Welding KW - Research KW - Review KW - Additive manufacturing PY - 2022 AN - OPUS4-54488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Bericht zum Fortschritt des laufenden Projekts: "Entwicklung von Wärmenachbehandlungskonzepten zur Vermeidung von Spannungsrelaxationsrissen" N2 - Dieses Dokument fasst den Projekfortschritt des BAM-Projektes "Entwicklung von Wärmenachbehandlungsstrategien zur Vermeidung von Spannungsrelaxationsrissen" im Rahmen des Fachausschusses 1 "Schweißmetallurgie" des DVS e.V. für das Projektjahr 2021 zusammen und stellt die wichtigsten Ergebnisse in Kurzform vor. T2 - Sitzung des FA1 "Schweißmetallurgie" der Forschungsvereinigung Schweißen und verwandte Verfahren des DVS e.V. CY - Online meeting DA - 22.03.2022 KW - UP-Schweißen KW - Spannungsrelaxationsriss KW - Wärmenachbehandlung KW - Eigenspannungen KW - Schallemissionsanalyse PY - 2022 AN - OPUS4-54525 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Fügetechnik in Wasserstofftechnologien Ein aktueller Überblick N2 - Der Vortrag gibt einen kurzen Überblick über die Bedeutung der Fügetechnik in Wasserstofftechnologien und über zukünftige Herausforderungen. Fügetechnologien, insbesondere die Schweißtechnik, haben dabei wesentliche Bedeutung für die Umsetzung von technischen Komponenten der Wasserstofftechnologien. Forschungsschwerpunkte ergeben sich insbesondere für die Erzeugung und den Transport des Wasserstoffs. T2 - Vortragsreihe des DVS Bezirksverbandes Mannheim-Ludwigshafen CY - Online meeting DA - 27.04.2023 KW - Wasserstoff KW - Schweißen KW - Studie PY - 2023 AN - OPUS4-57411 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Bewertung und Vermeidung von schweißverarbeitungsbedingten Rissen in hochfesten Baustählen N2 - Die vorliegende Präsentation fasst die Ergebnisse von drei laufenden bzw. beendeten AiF/IGF-Projekten zusammen, die über die Forschungsvereinigung Stahlanwendung FOSTA e.V. an der BAM bearbeitet wurden zum Thema: Bewertung und Vermeidung von schweißverarbeitungsbedingten Rissen in hochfesten Baustählen. T2 - FOSTA Tagung: Hochfester Stahl im Stahl und Anlagenbau CY - Essen, Germany DA - 16.05.2023 KW - Studie KW - Schweißen KW - Hochfester Stahl KW - Riss KW - Forschung PY - 2023 AN - OPUS4-57517 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Bauteilversuch zur Bewertung der wasserstoffunterstützten Rissanfälligkeit geschweißter, dickwandiger Offshore Gründungsstrukturen N2 - Offshore-Windenergieanlagen erfordern Gründungskonzepte aus unterpulver-(UP-)geschweißten Dickblechen (bspw. der Güte S420ML). Während der Schweißfertigung kann eine zeitverzögerte wasserstoffunterstützte Kaltrissbildung auftreten, deren Bewertung aufgrund der Bauteilgröße von Offshore-Strukturen sehr komplex ist. Deswegen wurde eine bauteilähnliche Geometrie (Mock-Up) entwickelt, um reale Steifigkeitsverhältnisse auf den Labormaßstab zu übertragen. Zusätzliche Versteifungen simulieren die Wirkung einer Einspannung bzw. Schrumpfbehinderung der Schweißnaht. Über die Verwendung von Schweißpulvern mit definierter Feuchte wurden zudem ein Extremszenario der Wasserstoffaufnahme simuliert. Entsprechend der vorgegebenen Mindestwartezeit für die ZfP von bis zu 48 h wurde die Schweißnaht zerstörungsfrei mit Phased-Array-Ultraschall-Prüfung (PAUT) geprüft und die Eigenspannungen über Röntgendiffraktometrie (XRD) bestimmt. Zusätzlich wurde die Wasserstoffverteilung in der Schweißverbindung numerisch simuliert. Außer zulässigen Defekten (wie Poren), wurde keine verzögerte Kaltrissbildung in den Mock-Ups festgestellt, was auf hohe Rissbeständigkeit hindeutet. T2 - Tagung Werkstoffprüfung 2023 CY - Berlin, Germany DA - 23.11.2023 KW - Kaltrissbildung KW - Wasserstoff KW - Offshore KW - Bauteilversuch KW - Imperfektion PY - 2023 AN - OPUS4-58907 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - A decarbonized future requires pipelines for CO2? A brief overview on perspectives and challenges N2 - Despite the use of hydrogen, for example, in various industrial production processes, CO2 emissions are still unavoidable in the medium term. For example, cement, lime and glass production or waste recycling (waste-to-energy plants) will continue to emit CO2 due to the processing involved chemical reactions. Conversely, the chemical industry with its value chains needs CO2 / carbon as a primary raw material for all compounds that fall within the organic chemistry. In this connection, carbon capture utilization (CCU) will play a key role here. In addition to “natural” methods (via reforestation and the dilution of moors), carbon capture storage (CSS) is already playing a major role, for example by injecting it into old natural gas underground caverns. The resulting quantities of CO2 have to be transported on a large scale and similar to hydrogen pipelines, there are concrete plans for CO2 pipeline networks. For this reason, this presentation provides an introduction to the topic and briefly outlines the associated challenges. On the one hand, these lie in the qualification (testing and construction) and especially in the operation of the pipelines with regard to strict monitoring of the gas quality (e.g. carbonic acid corrosion) and in the avoidance of critical service conditions (sudden pressure fluctuations), which can lead to localized condensation. Among other things, this can lead to the lowering of the typically welded low-alloyed steel pipes below the ductile brittle transition temperature (DBTT) and thus can have an impact on pipeline integrity. T2 - 49th MPA Conference CY - Stuttgart, Germany DA - 06.10.2025 KW - CO2 KW - Pipeline KW - Welding KW - Testing PY - 2025 AN - OPUS4-64316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component test for simulation of in-service welding on hydrogen pipelines N2 - Hydrogen is set as the energy carrier of tomorrow and most countries will achieve large-scale hydrogen transport through the conversion of the natural gas (NG) grid and the construction of new pipelines. The interaction between hydrogen and the pipeline materials differs fundamentally from that of NG, as hydrogen is readily absorbed into the material. Considering the possible hydrogen embrittlement (HE), the compatibility of the pipeline materials (low-alloyed steels with a wide strength/thickness range) must be investigated. However, pipelines require intervention for maintenance, repair, or grid expansion with welding on/onto the pipelines while in service, i.e. the well-known "hot tapping" and "stoppling". The challenges compared to NG can be broadly divided into the possible austenitization of the inner pipe material exposed to hydrogen and the welding itself. Both result in a significant increase in hydrogen solubility and could potentially pose challenges in terms of HE. Emphasis is placed on the word "could" because knowledge of "hot tapping" on hydrogen pipelines is scarce due a lack of service experience. To this end, this study proposes a concept for a component-like demonstrator with the objectives: (1) safe feasibility of "hot tapping" on pressurized model hydrogen pipeline sections, (2) facilitate ex-post sample extraction for the purpose of quantifying the absorbed hydrogen concentrations, and (3) ensure in-situ temperature measurement during welding to monitor the pipeline surface temperature. For safety reasons in the event of an unintentional "burn-through", a solid cylinder was inserted in the demonstrator to restrict the hydrogen gas volume to a small, pressurized layer. Reference pipeline surface temperature measurements were ensured on comparable, unpressurized geometries. The investigated range of welding conditions was investigated for representative material/thickness combinations (DN60 to DN300), suggesting the feasibility of the demonstrator for the determination of reliable in-service welding conditions for both installed and new pipelines for hydrogen service. T2 - 49th MPA Conference CY - Stuttgart, Germany DA - 06.10.2025 KW - Hydrogen KW - Pipeline KW - In-service welding KW - Component test PY - 2025 AN - OPUS4-64317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Ti and Nb influence on the HAZ microstructures of weld-simulated high-strength structural steel S690QL N2 - High-strength low-alloyed (HSLA) steels with yield strength / proof stress ≥ 600 MPa are the basis of modern light-weight steel constructions. Indeed, the economic and ecological benefits strongly depend on their processability in terms of welding. In this context, the use of highly productive welding processes, suitable welding consumables is of vital interest and requires a fundamental understanding of the microstructural changes in the HSLA steel and especially the heat-affected zone (HAZ) of the welded joint. Microalloying elements, such as Ti or Nb, are essential to achieve the desired mechanical properties. In this context, the underlying standards (such as EN 10025-6) only specify maximum values, resulting in different manufacturer customized microalloy concepts. Furthermore, even small deviations can have a drastic effect expressed by an excessive hardening or softening despite identical welding conditions and filler metal. The reason is the different thermal stability of the Ti and Nb-related precipitates (typically carbides or carbon nitrides). As a result, it is difficult (or even impossible) to adequately predict the weldability. Against this background, different microalloying routes with varying Ti and Nb contents for a S690QL reference grade were systematically investigated in terms of lab-cast alloys close to realistic chemical compositions. To investigate the influence of the welding heat input on the HAZ microstructure formation, physical simulations were carried with specified peak temperatures and cooling times (by a dilatometry). The focus was the identification of the occurring phase transformations during cooling and the final HAZ microstructure. In this context, a double welding cycle was simulated to further identify the behavior of the so-called intercritical HAZ (where softening is likely to occur) in case of the common multi-layer welding for thick plates. The results showed: (1) microalloying has significant influence on the formation of the individual HAZ dependent on (2) the thermal stability of the Ti or Nb-precipitates and (3) synergistic effects of further elements such as Mo and their effect on phase transformations in the HAZ. The results represent a microstructure-based validation of welding processing of such HSLA-steels e.g. in terms of preferred microalloy and weld heat input combinations. T2 - 49th MPA Conference CY - Stuttgart, Germany DA - 06.10.2025 KW - High-strength steel KW - Microalloy elements KW - Welding KW - Weld simulation KW - Microstructure PY - 2025 AN - OPUS4-64319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Welding of high-entropy alloys - New material concept vs. old challenges N2 - HEAs represent a relatively new class of materials. The the alloy concept is fundamentally different from the most conventional materials and alloys that are used today. Recently, the focus of HEA designs is more application-based. For that purpose, the elements of interest are carefully selected and multiple phases as well as micro-structures are deliberately adjusted. Currently, only limited attention has been paid to weldability of HEA. This encompasses possible effects on metallurgy and its influence on the desired properties. It remains open if welding causes e.g. considerable number of intermetallic phases or segregations and their effect on weld joint properties. For that reason, the scope of this study is to summarize already available studies on welding of HEAs with respect to the HEA-type, the applied welding process and its influence on the weld joint properties. T2 - IIW Annual Assembly, Meeting of Commission II-A CY - Online meeting DA - 20.07.2020 KW - High-entropy alloy KW - Welding KW - Review PY - 2020 AN - OPUS4-51116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - "On how to influence your results" - A review on carrier gas hot extraction parameters for hydrogen determination in welded specimens N2 - Carrier gas hot extraction (CGHE) is a commonly applied technique for determination of hydrogen in welded joints using a thermal conductivity device (TCD) for quantitative measurement. The CGHE is based on the accelerated hydrogen effusion due to thermal activation at elevated temperatures. The ISO 3690 standard suggests different specimen geometries as well as necessary minimum extraction time vs. temperature. They have the biggest influence on precise hydrogen determination. The present study summarizes the results and experience of numerous test runs with different specimen temperatures, geometries and factors that additionally influence hydrogen determination. They are namely: specimen surface (polished/as-welded), limited TCD sensitivity vs. specimen volume, temperature measurement vs. effects of PID-furnace controller as well as errors due to insufficient data assessment. Summarized, the temperature is the driving force of the CGHE. Two different methods are suggested to increase the heating rate up the reach the desired extraction temperature without changing the experimental equipment. Suggestions are made to improve the reliability of hydrogen determination depended on the hydrogen signal stability during extraction accompanied by evaluation of the recorded data. Generally, independent temperature measurement with calibration specimens is useful for further data analysis, especially if this data is used for calculation of trapping kinetics by thermal desorption analysis (TDA). T2 - IIW Annual Assembly and International Conference 2018, Meeting of Commission II-E CY - Nusa Dua, Bali Island, Indonesia DA - 15.07.2018 KW - Carrier gas hot extraction (CGHE) KW - Welding KW - ISO 3690 KW - Hydrogen KW - Experimental design PY - 2018 AN - OPUS4-45520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Mechanische Eigenschaften der Längschweißnaht einer X65-Pipeline in Druckwasserstoffatmosphäre N2 - Im folgenden Beitrag werden die Ergebnisse der mechanischen Eigenschaften unter 200 bar Druckwasserstoff des Werkstoffes 316L (1.4404) vorgestellt. Dazu wurden Hohlzugproben aus konventionellem, kaltgezogenem Material herausgearbeitet und per SLM-PBF additiv gefertigten Hohlzugproben gegenübergestellt. Die Proben wurden da-bei unter Druckwasserstoff einer SSRT-Prüfung mit einer Dehnrate von 1E-5/s unterzogen. Zusätzlich zum Werkstoffzustand wurde der Einfluss des Oberflächenzustandes charakterisiert: (1) additiv gefertigten Proben mit endkonturnaher Form „as-printed“ oh-ne zusätzliche Bohrung, (2) Bohren und (3) zusätzliches Honen. Die gemessene Degradation der mechanischen Eigenschaften unter Wasserstoff hing dabei in erster Linie von der Oberfläche ab und damit indirekt vom Werkstoffzustand „as-printed“ oder kaltgezogen ab. Während die Proben mit gebohrter und/oder gehonter Oberfläche eine RRA (Relative Reduction of Area) 78 % aufwiesen, zeigten die AM-Proben eine deutlich höhere RRA von 90 %. Ein möglicher Grund dafür sind während der Fertigung ausbildende Oxidschichten, die sich durch geringe Mengen an Restsauerstoff während des AM-Prozesses ausbilden. Zur abschließenden Charakterisierung sind weitere Untersuchungen erforderlich, insbesondere für ein größeres Parameterfeld an Prüftemperaturen (Oxideinwirkung) und Dehnraten (mechanische Beständigkeit der Oxidschicht ähnlich den Einflüssen auf „klassische“ Spannungsrisskorrosion). T2 - DGM Arbeitskreis Wasserstoff CY - Neu-Isenburg, Germany DA - 26.05.2025 KW - Pipeline KW - Wasserstoff KW - Hohlzugprobe PY - 2025 AN - OPUS4-63236 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Additive gefertigte 316L-Hohlzugproben unter Druckwasserstoff - Einfluss der Oberfläche und des Werkstoffzustandes N2 - Im folgenden Beitrag werden die Ergebnisse der mechanischen Eigenschaften unter 200 bar Druckwasserstoff des Werkstoffes 316L (1.4404) vorgestellt. Dazu wurden Hohlzugproben aus konventionellem, kaltgezogenem Material herausgearbeitet und per SLM-PBF additiv gefertigten Hohlzugproben gegenübergestellt. Die Proben wurden da-bei unter Druckwasserstoff einer SSRT-Prüfung mit einer Dehnrate von 1E-5/s unterzogen. Zusätzlich zum Werkstoffzustand wurde der Einfluss des Oberflächenzustandes charakterisiert: (1) additiv gefertigten Proben mit endkonturnaher Form „as-printed“ oh-ne zusätzliche Bohrung, (2) Bohren und (3) zusätzliches Honen. Die gemessene Degra-dation der mechanischen Eigenschaften unter Wasserstoff hing dabei in erster Linie von der Oberfläche ab und damit indirekt vom Werkstoffzustand „as-printed“ oder kaltgezogen ab. Während die Proben mit gebohrter und/oder gehonter Oberfläche eine RRA (Relative Reduction of Area) 78 % aufwiesen, zeigten die AM-Proben eine deutlich höhere RRA von 90 %. Ein möglicher Grund dafür sind während der Fertigung ausbildende Oxidschichten, die sich durch geringe Mengen an Restsauerstoff während des AM-Prozesses ausbilden. Zur abschließenden Charakterisierung sind weitere Untersuchungen erforderlich, insbesondere für ein größeres Parameterfeld an Prüftemperaturen (Oxideinwirkung) und Dehnraten (mechanische Beständigkeit der Oxidschicht ähnlich den Einflüssen auf „klassische“ Spannungsrisskorrosion). T2 - DGM Arbeitskreis Wasserstoff CY - Neu-Isenburg, Germany DA - 26.05.2025 KW - Wasserstoff KW - Additive Fertigung KW - Hohlzugprobe KW - Austentitischer Stahl PY - 2025 AN - OPUS4-63239 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hollow specimens as simplified approach for testing metallic materials under high pressure hydrogen development and utilization N2 - The hydrogen economy requires large-scale storage and transportation options like long-distance transmission pipelines. The applied materials (typically steels) must be carefully tested under different conditions (pressure, temperature, impact of impurities, etc.) for their suitability and service with hydrogen. In combination with mechanical load, as occurs in every gas network, hydrogen can induce degradation of the mechanical properties and promote finally resulting in embrittlement, i.e., the formation of cracks. The conventional testing procedures consist of autoclaves in which samples are strained under pressurized hydrogen. The test apparatus requires large amounts of hydrogen and thus a high level of safety and costs. In very specific cases, these tests might be replaced by simplified electrochemical charging. However, these test alternatives raise several questions regarding the equivalency of both testing scenarios. In the early 1980’s the idea of a so-called hollow tensile sample raised and was reinitiated 2021 in ISO TC 164 by T. Ogata (NIMS, Japan) and further developed (e.g. by Fraunhofer IWM, Germany). The idea was: the sample itself represents the autoclave instead of charging a sample from outside. For that reason, a hole is drilled through the sample and the inner surface is pressurized by hydrogen gas during the mechanical testing. Indeed, this represents the main advantage as no expensive pressure-resistant autoclave equipment for large H-volumes is necessary, which significantly reduces the safety-related issues and thus the high costs. In the following, we show recent activities at BAM Berlin on adaption of the hollow-specimen technique for slow strain rate testing (SSRT). The current research activities are focussed on macroscopic influences like the sample geometry, minimum necessary dimensions, and microscopic influences e.g., on the surface by the processing method (drill hole quality and geometric precision) as well as the gas pressure effect (mechanical deformation of surface in different media). T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - Hydrogen KW - Hollow tensile specimen KW - High-pressure KW - Mechanical properties KW - Testing PY - 2023 AN - OPUS4-58220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen absorption and diffusion in T24 steel weld joints and effect on mechanical properties N2 - The present contribution summarizes results obtained from experiments with low-alloyed boiler steel grades T24 (CrMoV alloy), T22 (CrMo) and thermally simulated T24 HAZ microstructure and pure weld metal. The hydrogen absorption and diffusion behavior was investigated by permeation experiments and thermal desorption analysis (TDA). The results showed significant weld microstructure influence on diffusion by hydrogen trapping. Trapped hydrogen was determined in the T24 BM at temperatures up to 120 °C compared to 75 °C in the T22. In addition, the T24 HAZ showed decreased diffusion coefficients (at room temperature) of approximately one magnitude compared to the BM. For the mechanical properties, tensile tests were conducted with electrochemically hydrogen charged specimens and compared to results obtained from slow strain rate tests (SSRT) in high-temperature water up to 200 °C. The as-welded HAZ had remarkably increased susceptibility compared to the BM already at low hydrogen concentration of 1-2 ppm. The SSRT were conducted for free corrosion and acidic environment and confirmed this behavior at elevated temperatures for both HAZ microstructures of T24 and T22. Summarized, each weld microstructure has specific diffusion coefficients and shows different susceptibility to degradation of the mechanical properties, i.e. delayed hydrogen assisted cracking or stress corrosion cracking. T2 - NACE Italia - 2nd Conference & Expo 2018 CY - Genoa, Italy DA - 28.05.2018 KW - Hydrogen KW - Stress corrosion cracking KW - Welding KW - Creep-resistant steel KW - T24 / 7CrMoVTiB10-10 PY - 2018 AN - OPUS4-45080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Wasserstoffeffekt auf die Degradiation der mechanischen Eigenschaften von T24 Schweißgut und simulierter Grobkorn-WEZ T2 - MDDK Magdeburg CY - Magdeburg DA - 2014-11-27 PY - 2014 AN - OPUS4-32157 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Der Weg zur Standardisierung der Hohlzugtechnik für die Nutzung mit gasförmigem Wasserstoff N2 - Dieser Kurzvortrag stellt selektierte Ergebnisse des Projektes "H2Hohlzug" im übergeordneten Projekt "TransHyDE" kurz vor. Insbesondere wird auf die Herausforderung eingegangen, wiederholbare Prüfbedingungen unter Druckwasserstoffbeanspruchung, einzuhalten. T2 - Herbstsitzung des DGM Arbeitskreises "Materialprüfung unter Wasserstoff" CY - Dortmund, Germany DA - 19.11.2024 KW - Hohlzugprobe KW - Wasserstoff KW - Materialprüfung KW - Standardisierung PY - 2024 AN - OPUS4-61718 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Additive manufacturing for components in hydrogen technologies N2 - With the introduction of a hydrogen-based energy and national economy, safety-relevant components for hydrogen technologies are becoming increasingly important. Characteristic of hydrogen technologies are, for example, harsh environmental conditions such as cryogenic or high-pressure storage, corrosion issues in fuel cells and electrolyzers, turbines, and many more. Additive manufacturing of components is becoming increasingly important and irreplaceable for the production of complex technical systems. Using the case studies of burners for gas turbines and electrodes and membranes for polymer (PEMFC) and solid oxide (SOFC) fuel cells, this article shows the potential of additive manufacturing of components. At the same time, however, the challenge of considering divergent mechanical properties depending on the direction of assembly in a "hydrogen-compatible" manner is also highlighted. Finally, the challenges posed by additive manufacturing and hydrogen for materials testing are highlighted under scenarios that are as realistic as possible. T2 - MPA-Workshop Hydrogen CY - Online meeting DA - 10.11.2022 KW - Additive manufacturing KW - Hydrogen KW - Technologies KW - Overview KW - Component PY - 2022 AN - OPUS4-56233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen diffusion in creep-resistant 9%-Cr P91 steel weld metal N2 - 9 %-Cr steel P91 is widely used in power plants due to the excellent creep-resistance. Components of this steel are typically welded and demand for careful welding fabrication, whereas a so-called post weld heat treatment (PWHT), must be conducted to increase the toughness and decrease the hardness of the martensitic as-welded (AW) microstructure. Before the PWHT, a hydrogen removal (or dehydrogenation) heat treatment is necessary as hardened AW martensitic microstructure is generally prone to delayed hydrogen assisted cracking (HAC). The microstructure and temperature dependent hydrogen diffusion is an important issue as it determines how long a potential crack-critical hydrogen concentration could remain in the microstructure. In this context, reliable hydrogen diffusion coefficients of P91 weld metal are rare. Hence, the diffusion behavior of P91 multi-layer weld metal was investigated in two different microstructure conditions: AW and further PWHT (760 °C for 4 h). Two different experimental techniques were used to cover a wide range of hydrogen diffusion temperatures: the electrochemical permeation technique (PT) at room temperature and the carrier gas hot extraction (CGHE) for a temperature range from 100 to 400 °C. From both techniques typical hydrogen diffusion coefficients were calculated and the corresponding hydrogen concentration was measured. It was ascertained that both heat treatment conditions show significant differences in hydrogen diffusivity. The biggest deviations were identified for room temperature. In this case, the AW condition shows significant hydrogen trapping and up to seven times lower diffusion coefficients. Additionally, PT investigations showed a preferred diffusion direction of hydrogen in the weld metal expressed by the diffusion coefficients and the permeability for both heat treatment conditions. The CGHE generally revealed lower diffusion coefficients for the AW microstructure up to 200 °C. In addition, the AW condition showed hydrogen concentrations up to 50 ml/100 g (considering electrochemical charging). Nonetheless, this hydrogen was not permanently (reversibly) trapped. Nonetheless, this temperature is approximately 100 °C below recommended dehydrogenation heat treatment (DHT). This has two main consequences: (I) in case of welding is interrupted or no DHT is conducted, a HAC susceptibility of hardened martensitic P91 weld metal cannot be excluded and (II) DHT can be conducted at temperatures around 200 °C below the recommended temperatures. T2 - IIW Annual Assembly, Meeting of Commission IX-C "Creep and heat resistant welds" CY - Bratislava, Slovakia DA - 07.07.2019 KW - Hydrogen KW - Diffusion KW - Weld metal KW - Microstructure KW - Post weld heat treatment PY - 2019 AN - OPUS4-48449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen in weld joints - An underestimated risk? - Utilization potential of gas analytics versus safety of welded components N2 - Hydrogen was once called “the versatile embrittler” [1], which summarizes very well the effect on reduction of ductility and/or toughness in technical alloys like steel. In that connection, welding is one of the most important component fabrication technologies. During welding, hydrogen can be transferred to the weld pool from manifold sources (like contaminations, residuals at the surface, etc.). As hydrogen embrittles a material, the safety of welded components with hydrogen is always a critical issue. Weld heat input causes additional changes in the microstructure like grain growth or partial dissolution of precipitates and many more. All these things influence the mechanical properties and also represent hydrogen traps. These traps decrease the hydrogen diffusion compared to the ideal lattice. The result can be so-called delayed hydrogen assisted cracking (HAC) of the weld joint due to the significantly decreased diffusivity by trapped hydrogen. This is often an underestimated risk as those cracks can appear in the weld joint even after some days! It is essential to know about hydrogen ingress during welding and the microstructure specific hydrogen diffusion. Both are depended on weld parameter influence and the chemical composition of the base material and weld metal. For that purpose, gas analytic methods like solid-state carrier gas hot extraction (CGHE) are useful tools to: (1) identify detrimental hydrogen concentrations from weld joints, (2) binding energies from hydrogen traps by thermal desorption analysis or (3) high-temperature diffusion coefficients. Those values are extremely important for welding practice in terms of recommendations on realistic hydrogen removal heat treatment (HRHT) after welding. Considering the increasing use of “digital” experiments, the data is also needed for reliable numerical simulations of HAC process or HRHT-effectiveness. The present contribution gives an overview on the influence of hydrogen on weld joints, the necessity, methods and standards for hydrogen determination (CGHE) with the aim of fabrication of safe welded and crack-free components. [1] R. A. Oriani (1987), Corrosion 43(7):390-397. doi: 10.5006/1.3583875 T2 - 20. Tagung Festkörperanalyse - FKA20 CY - Vienna, Austria DA - 01.07.2019 KW - Hydrogen KW - Welding KW - Gas analytic PY - 2019 AN - OPUS4-48402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Wasserstoffdiffusion und lokale Volta-Potentiale in Hoch- und Mittelentropie-Legierungen N2 - Hochentropie-Legierungen (HEAs) zeichnen sich durch einen Mischkristall-System aus mindestens fünf und Mittelentropie-Legierungen (MEAs) durch mindestens drei Hauptlegierungselemente aus, in äquiatomarer Zusammensetzung. Sie zeigen außergewöhnliche Anwendungseigenschaften, wie z.B. hohe Festigkeit, Duktilität oder Korrosionsbeständigkeit. Zukünftige HEA/MEA-Komponenten aufgrund ihrer Eigenschaften für wasserstoffhaltige Umgebungen (wie Behälter für kryogene oder Hochdruckspeicherung) von Interesse. Daher ist die Bewertung der Wasserstoffabsorption und die Diffusion in diesen Materialien von großer Bedeutung. Dazu wurden in unserer Studie eine CoCrFeMnNi-HEA und eine CoCrNi-MEA untersucht. Die Proben wurden elektrochemisch mit Wasserstoff beladen. Für die Ermittlung des Wasserstoffdiffusionsverhaltens wurde die thermische Desorptionsanalyse (TDA) mit unterschiedlichen Heizraten bis zu 0,250 K/s angewandt. Die nachfolgende Peakentfaltung der Signale führte zu Hochtemperatur-Desorptionsspitzen und Wasserstofftrapping auch über 280°C. Eine resultierende Gesamtwasserstoffkonzentration > 40 ppm wurde für den MEA ermittelt und > 100 ppm für den HEA. Dies deutet auf zwei wichtige Effekte hin: (1) verzögerte Wasserstoffdiffusion und (2) eine beträchtliche Menge an getrapptem Wasserstoff auch bei hoher Temperatur. Beide Effekte können hinsichtlich einer wasserstoffunterstützten Rissbildung kritisch werden, dies erfordert jedoch weitere Untersuchungen. Zusätzlich erfolgte die Bestimmung des lokalen Volta-Potentials mittels hochauflösender Kelvin-Sonden-Kraft-Mikroskopie (SKPFM). Die ermittelten Scans zeigen einen bestimmten Einfluss der Wasserstoffbeladung auf die Potentiale. T2 - Symposium on Materials and Joining Technology CY - Online meeting DA - 07.09.2020 KW - Wasserstoff KW - High-entropy alloy KW - Diffusion KW - Scanning kelvin probe force microscopy KW - Thermal desorption analysis PY - 2020 AN - OPUS4-51187 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -