TY - CONF A1 - Rhode, Michael T1 - Hydrogen diffusion in thick-walled S690 SAW joints: Part 2 - Predictive modeling of welding heat input and microstructure influence N2 - High-strength low-alloy (HSLA) steels such as S690 are widely employed in thick-walled welded structures, where hydrogen-assisted cold cracking (HACC) remains a persistent concern. While microstructure-specific hydrogen diffusion coefficients (DH) for weld metal (WM), heat-affected zone (HAZ), and base material (BM) were experimentally established in Part 1 of this study, their quantitative influence on hydrogen accumulation and effusion has not yet been fully clarified. This work presents a transient, spatially resolved numerical model for simulating hydrogen transport in multi-pass submerged arc welds. The model integrates experimentally determined DH values with realistic thermal cycles and temperature-dependent boundary conditions. Developed in Python, the simulation tool is purpose-built for hydrogen diffusion in welded joints and offers a focused, transparent alternative to general-purpose finite element platforms. Parametric analyses demonstrate that, although the diffusion coefficients vary by up to 50 %, their impact on overall hydrogen retention is minor. In contrast, welding parameters such as plate thickness, bead geometry, cooling time (t₈/₅), and interpass tem-perature exert a dominant influence on hydrogen distribution. Despite clear microstructural differences between the thermomechanically rolled (S690MC) and quenched and tempered (S690Q) variants, including hardness softening versus hardening in the heat-affected zone of the (pen)ultimate weld bead, the simulations confirm that their diffusion behavior and hydrogen solubility are closely aligned. Consequently, differences in diffusivity and solubility exert only a minor influence on hydrogen retention compared to thermal exposure and joint geometry. These findings support the interchangeable use of both steel grades in terms of HACC risk due to hydrogen diffusion kinetics, under comparable welding conditions. T2 - 78th IIW Annual Assembly, Meeting of Commission II-C CY - Genoa, Italy DA - 22.06.2025 KW - Hydrogen assisted cracking KW - Numerical simulation KW - Hydrogen diffusion PY - 2025 AN - OPUS4-63541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Characterization of hydrogen trapping in a CoCrFeMnNi high-entropy alloy charged up to 1000 bar high-pressure hydrogen N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s), see Fig. 1a to d. The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. In addition, the trap occupancy rate must be considered in terms of a pressure-related hydrogen absorption. The derived apparent hydrogen solubility was in the order: 316L < CoCrFeMnNi-HEA for both charging pressures. Especially, the 1,000 bar values lead to noteworthy results with > 70 wt.ppm for the AISI 316L and >130 wt.ppm for the CoCrFeMnNi. In fact, both the hydrogen diffusion and trapping data on gaseous high-pressure hydrogen charged HEAs are rare so far. The results of the present study allow a deeper understanding of hydrogen trapping in the regarded CoCrFeMnNi-system. T2 - 78th IIW Annual Assembly and International Conference CY - Genoa, Italy DA - 26.06.2025 KW - Hydrogen KW - Thermal desorption analysis KW - High-pressure charging KW - Trapping KW - Diffusion PY - 2025 AN - OPUS4-63542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Reparaturschweißen von zukünftigen in Betrieb befindlichen Wasserstoff-Pipelines N2 - Wasserstoff leistet als Energieträger der Zukunft einen entscheidenden Beitrag zur nachhaltigen Energieversorgung. Der Transport wird vorwiegend durch das europäische Ferngasleitungsnetz erfolgen. Bisherige Untersuchungen zeigen, dass bisher verwendete Rohrstähle grundsätzlich für den Wasserstofftransport geeignet sind. Diese Eignung ist nicht direkt auf Reparaturfragestellungen im Betrieb übertragbar, da Schweißungen aus technisch-ökonomischen Gründen oft unter fortwährendem Gasfluss durchgeführt werden. Ein im Erdgasnetz angewandtes Konzept ist das Anbohren druckführender Pipelines („Hot Tapping“). Dazu werden Zylinderhalbschalen zuerst durch Längs- und dann per Rohrrundnähten an die Pipeline geschweißt. Essenziell ist dabei die maßgeschneiderte Wärmeeinbringung, um das „Durchbrennen“ in die Pipeline zu vermeiden. Für zukünftige Wasserstoffpipelines liegt der Fokus u.a. auf dünnwandigen Leitungen. Im Gegensatz zu Erdgas, führen die beim Schweißen erreichten hohen Temperaturen an der Innenseite der Pipeline zu einer zusätzlichen Wasserstoffaufnahme in den Rohrstahl mit möglicher Materialdegradation. Zur praktischen Lösung der Fragestellung, sind internationale Aktivitäten im Gang. Diese umfassen bspw. die Möglichkeiten und Weiterentwicklung von realistischen Prüfkonzepten (u.a. durch maßstäbliche Bauteilversuche). Dazu untersucht die Bundesanstalt für Materialforschung und -prüfung (BAM) in einem DVGW-geförderten Kooperationsprojekt mit Gasnetzbetreibern, die Frage der Übertragbarkeit der Schweißkonzepte der Erdgastechnik auf zukünftiger Wasserstoffpipelines. T2 - DVS BV-Berlin / BAM Gemeinschaftsveranstaltung: Know-How-Transfer in der Fügetechnik: Forschung - Bildung - Fertigung CY - Berlin, Germany DA - 08.11.2024 KW - Schweißen KW - Wasserstoff KW - Pipelines KW - Hot-tapping KW - Bauteilversuch PY - 2024 AN - OPUS4-61589 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Mikrostrukturspezifische Wasserstoffdiffusion in UP-Schweißverbindungen hochfester Stahlgrobbleche N2 - Hochfeste Baustähle sind für den sogenannten, modernen Stahlleichtbau im Gebäude-, Anlagen- oder Mobilkranbau nicht mehr wegzudenken. Durch den Einsatz dieser Stähle mit Streckgrenzen ≥ 690 MPa können durch die Reduzierung der Wanddicke kann eine erhebliche konstruktive Gewichtsreduzierung erreicht werden. Dies führt zudem zu weiteren sekundären Vorteilen, wie geringeren Schweißverarbeitungskosten, da u.a. die zu füllenden Nahtquerschnitte kleiner sind. Für hochfeste Grobbleche kommt dabei insbesondere das Unterpulverschweißen (UP) zum Einsatz, das durch seine hohe Abschmelzleistung gekennzeichnet ist. Allerdings haben hochfeste Stahlgrobbleche aufgrund ihrer Mikrostruktur eine von vornherein begrenzte Duktilität ggü. niederfesten Stählen und sind per se anfälliger für verzögerte, wasserstoffunterstützte Kaltrissbildung Zudem führt die große Bleckdicke einerseits zu hoher konstruktiver Steifigkeit der Komponenten (mit der Folge erhöhter Eigenspannungen) und andererseits durch die dicken Schweißlagen zu langen Diffusionswege für den Wasserstoff, welcher bspw. durch feuchtes Schweißpulver in die Naht gelangen kann. Hieraus ergeben sich zwei Schwierigkeiten: (1) bis zu welcher Zeit mit einer verzögerten Rissbildung bei Raumtemperatur zu rechnen, wenn keine weitere Wärmebehandlung zur Reduktion des Wasserstoffes erfolgt bzw. (2) wenn diese notwendig ist, bei welche Temperatur dies erfolgen sollte. Dazu sind abgesicherte Diffusionskoeffizienten für den Wasserstoff in UP-Schweißungen notwendig, u.a. für numerische Simulationen. Diese Koeffizienten sind bisher nur äußert lückenhaft verfügbar. Aus diesem Grund wurden mikrostrukturspezifische, elektrochemische Permeationsversuche (nach ISO 17081) und Warmauslagerungsversuche mit TGHE an UP-Schweißverbindungen durchgeführt. Dazu wurden ein thermomechanisch (TM) gewalzter bzw. vergüteter (QT) Grundwerkstoff betrachtet, sowie das Schweißgut und die Wärmeeinflusszone (WEZ). Interessanterweise (und im Gegensatz zu Effekten des Wärmebehandlungszustandes auf die Diffusion in MSG-Schweißverbindungen) zeigten die UP-Schweißmikrostrukturen kaum signifikante Unter-schiede im Diffusionsverhalten von WEZ und Schweißgut. Dies ist auf den positiven Ef-fekt des mehrfachen Anlassens der Mikrostruktur durch die Mehrlagenschweißung zu-rückzuführen. Aus praktischer Anwendersicht können daher dickwandige UP-Verbindungen ausschließlich anhand der einfach ermittelbaren Diffusionskoeffizienten für den Grundwerkstoff beurteilt werden. Zudem zeigte sich, dass der Walzzustand (QT vs. TM) in Grobblechen gegenüber Dünnblechen eine untergeordnete Rolle für die Wasserstoffdiffusion bildet. Ergänzende numerische Simulationen zeitabhängigen Wasserstoffdiffusion bestätigten das Verhalten. T2 - DGM Arbeitskreis Wasserstoff CY - Neu-Isenburg, Germany DA - 26.05.2025 KW - Wasserstoff KW - Kaltrissbildung KW - Diffusion KW - Numerische Simulation KW - Permeation PY - 2025 AN - OPUS4-63235 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Thickness and microstructure effect on hydrogen diffusion in creep-resistant 9 % Cr P92 steel and P91 weld metal N2 - Martensitic 9 %-Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. The small number of available diffusion coefficients varies already at room temperature by several orders of magnitude (mostly regarded as result of present microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. The diffusion coefficients are calculated by two methods (time-lag and inflection point method) were performed. The results show that, despite of microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. T2 - IIW Intermediate Meeting, Comm. IX-C "Welding of creep and heat-resistant materials" CY - Online meeting DA - 08.03.2021 KW - Hydrogen KW - Welding KW - Diffusion KW - Creep-resistant steel KW - Electrochemical permeation PY - 2021 AN - OPUS4-52239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - HEA Processing - SURDIA - Current R&D at BAM N2 - This presentation summarizes the latest results on the BAM-Themenfeld project SURDIA on processing of high-entropy alloys (HEAs) at BAM. At first, the influence of machining by ultrasonic-assisted milling on the surface integrity is presented. Second, the weld processing by Tungsten Inert Gas (TIG) welding is presented and the results of the Friction Stir Welding (FSW), which is conducted at BAM for the first time. T2 - DFG SSP 2006 - Subgroup meeting on the synthesis and processing of CCAs/HEAs CY - Online meeting DA - 08.10.2021 KW - High-entropy alloy KW - Ultrasonic-assisted milling KW - Welding KW - Processing KW - Surface integrity PY - 2021 AN - OPUS4-53497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Friction stir welding of a CoCrFeMnNi high entropy alloy compared to AISI 304 austenitic stainless steel: evolution of microstructure and mechanical properties N2 - High entropy alloys (HEA) are a new class of materials. In contrast to conventional alloys, HEA are single-phase alloys with at least five alloying elements. HEAs have enormous application potential due to (postulated) excellent structural property combinations from low to high temperatures. For HEA-application as structural materials in real components, a key issue is the suitability for joining processing. Requirements for the reliable and safe joining of these materials are crucial regarding economical component manufacture for future applications. In this context, friction stir welding (FSW) is a promising joining process due to the welding process temperature below the material melting point avoiding major issues, e. g. formation of (hard and brittle) intermetallic phases, which may have detrimental influences on the weld joint properties. This study presents elementary research about the FSW process influences on a CoCrFeMnNi-HEA with focus on the microstructure and mechanical properties. For that purpose, the FSW joint of the HEA is compared to that of an austenitic stainless steel AISI 304. The microstructures of the welds were investigated and characterized by means of light microscopy, SEM, EBSD and XRD. Hardness and tensile testing were applied to determine influences on the mechanical properties. Generally, a comparable weldability of HEA and AISI 304 in terms of metallurgical characteristics and resulting mechanical properties exhibited. For the weld joints of both materials typical characteristics regarding FSW were observed within the weld metal and thermo-mechanically influenced zone: fine-grained stirred zone with increased hardness and reduced fracture elongation compared with the respective base material. T2 - Bachelor-, Master-, Doktoranden-Kolloquium CY - Magdeburg, Germany DA - 20.10.2021 KW - High Entropy Alloy KW - Friction stir welding KW - Austenitic stainless steel PY - 2021 AN - OPUS4-53608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Diffusion in high-pressure hydrogen charged multi-principal element alloys CoCrFeMnNi and CoCrNi vs. AISI 316L N2 - Multi-principal element alloys (MPEAs) are innovative materials that have attracted extensive research attention within the last decade. MPEAs are characterized by a solid solution of equiatomic metallic elements. Depending on the number of elements, they are also referred as high entropy alloys (HEAs with n ≥ 4 elements like CoCrFeMnNi) and medium-entropy alloys (MEA with n = 3 elements CoCrNi). Depending on the alloy concept, MPEAs show exceptional properties in terms of mechanical performance or corrosion resistance at extreme environments. In that connection, hydrogen and its challenges for the most metallic materials gets more and more important. MPEAs are candidate materials for the substitution of conventional materials like austenitic stainless steels e.g., at very high-pressure up to 1000 bar. Those pressures are typically reached in valves or compressors for refueling of tanks with operational pressure of 700 bar. So far, the susceptibility of HEA/MEAs to hydrogen assisted cracking (if any) and the especially the underlying hydrogen uptake and diffusion was not within the scientific scope and not investigated in detail yet. For that reason, we focused on the hydrogen absorption the characterization of the hydrogen diffusion and trapping at elevated temperatures in a CoCrFeMnNi-HEA (each element with 20 at.-%) and CoCrNi-MEA, each element with 33.3 at.-%). As reference grade, the commercially available austenitic stainless steel AISI 316L was investigated. High-pressure hydrogen charging was conducted at different pressures in autoclave environment with maximum value of 1,000 bar. Thermal desorption analysis (TDA) via carrier gas hot extraction with coupled mass spectrometry was used with a max. heating rate of 0.5 K/s up to 650 °C. The measured desorption spectra of the different samples were deconvoluted into a defined number of individual peaks. The individually calculated peak temperatures allowed the definition of activation energies for predominant trap sites in the respective materials as well as the percentage share of the totally absorbed hydrogen concentration. The results present for the first time the complex interaction of both MPEAs and high-pressure hydrogen charging. A deconvolution of four peaks was selected and a main desorption peak was identified the dominant hydrogen trap containing the biggest share of the absorbed hydrogen concentration. The chemical composition an austenitic phase of both MPEAs is responsible for delayed hydrogen diffusion and strong, but mostly reversible, trapping. The comparison with the 316L samples showed significantly higher activation energies in the MPEAs, whereas hydrogen was also trapped at very high extraction temperatures. The absorbed maximum hydrogen concentration at 1,000 bar was 130 ppm for the CoCrFeMnNi-HEA, 50 ppm for the CoCrNi-MEA and 80 ppm for the 316L. It is interesting that the CoCrFeMnNi-HEA has obviously a way higher trapping capability compared to the conventional austenitic 316L, which could be a major advantage in terms of resistance to hydrogen assisted cracking. T2 - 47th MPA-Seminar CY - Stuttgart, Germany DA - 10.10.2023 KW - High-entropy alloy KW - Hydrogen KW - Diffusion KW - Thermal desorption analysis KW - Multiple-principal element alloy PY - 2023 AN - OPUS4-58675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Local mechanical properties of TIG dissimilar metal welded CoCrFeMnNi high-entropy alloy to austenitic steel AISI 304 N2 - Multiple principal element alloys (MPEA) encompass the well-known high entropy alloys (HEAs). MPEA/HEA represent a new class of materials consisting of at least three alloying elements, each containing 5 to 35 at.-%. This alloying concept thus differs fundamentally from conventional materials such as steel or nickel alloys. For this purpose, the alloying elements are specifically selected, and the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. In particular, conflicting goals, such as the trade-off between strength and ductility in conventional steels, are overcome. In the last 20 years, however, the focus has been on material synthesis. With the increase in available material quantities, the focus is now on pro-cessing issues such as joining and welding processes. The weldability of MPEA has received very little atten-tion so far. Experience with dissimilar metal welds (DMWs) is completely lacking but is essential for the appli-cation of these materials in combination with conventional materials. The present study presents, comprehen-sive experimental results on the weldability of MPEA-DMWs. For that purpose, a Co20Cr20Fe20Mn20Ni20 HEA in cold-rolled and heat-treated condition was joined by means of tungsten inert gas welding (TIG) with the austenitic Cr-Ni steel AISI 304. The DMWs resulted in interesting mechanical properties. They were obtained by instrumented tensile tests as well as the local deformation in the weld area by using digital image correlation (DIC) technique. A significant softening in the heat-affected zone (HAZ) of the MPEAs as well as a slightly reduced tensile strength with a significant decrease of the elongation at fracture were found. The experiments provided proof in principle of the weldability of the MPEAs for DMWs with conventional materials that ensure a corresponding capability for mechanical loading. This allows further considerations on the application of these innovative materials. T2 - IIW Annual Assembly, Meeting of Commission C-II CY - Singapore DA - 18.07.2023 KW - High-entropy alloy KW - Welding KW - Microstructure KW - Mechanical properties KW - Dissimilar metal weld PY - 2023 AN - OPUS4-57978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Vereinfachte Prüfmethode zur Bewertung der Gefahr wasserstoffunterstützter Kaltrisse (HACC) beim Lichtbogenschweißen hochfester Stähle N2 - Die Präsentation gibt einen Kurzüberblick über die Versuchsmethodik und den erreichten Projektfortschritt des IGF-Projektes 01IF22624N bzw. DVS-Nr. 01.3410. Ziel der Untersuchungen ist eine Methodik für eine vereinfachte Probenform zur Bewertung der Kaltrissanfälligkeit durch Wasserstoff bei hochfesten, geschweißten Stählen. Dazu wird ISO 3690 (Quantifizierung des H-Gehaltes) mit direkt prüfbaren Querzugproben kombiniert, die die realistische Bewertung der Schweißnaht unter industriepraktischen Parametern ermöglicht. T2 - Sitzung des NA 092-00-05 GA Gemeinschaftsarbeitsausschuss NAS/NMP: Zerstörende Prüfung von Schweißverbindungen (DVS AG Q 4/Q 4.1) CY - Online meeting DA - 20.03.2025 KW - Schweißnaht KW - Kaltrissbildung KW - Wasserstoff KW - Prüfung KW - ISO 3690 PY - 2025 AN - OPUS4-62759 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -