TY - CONF A1 - Rhode, Michael T1 - Simulation der Wasserstoffverteilung in UP-geschweißten Grobblechen als Bewertungstool für die Kaltrissanfälligkeit von Offshorestrukturen N2 - Gründungsstrukturen für Offshore-Windkraftanlagen bestehen in der Regel aus hochfesten Stahlgrobblechen, die im UP-Verfahren geschweißt werden, durch den u.U. größere Mengen an Wasserstoff eingebracht werden können. Die große Blechdicke führt zudem zu langen Diffusionswegen und einer verlängerten Diffusionszeit für den Wasserstoff. Infolgedessen kann sich der Wasserstoff in Bereichen mit hoher mechanischer Spannung und Dehnung ansammeln und daher zu einer verzögerten Kaltrissbildung führen. Aufgrund der verzögerten Diffusion muss daher eine Mindestwartezeit von bis zu 48 h eingehalten werden, bevor eine zerstörungsfreie Prüfung durchgeführt wird. Darüber hinaus ist die Beurteilung möglicher Kaltrissstellen sehr komplex. Es wurde daher ein numerisches Modell zur Abbildung einer bauteilähnlichen Schweißnahtprüfung entwickelt. Dazu wurde das Temperaturfeld während des Schweißens und der anschließenden Abkühlung experimentell bestimmt und numerisch simuliert. Auf dieser Grundlage wurde Diffusionsmodell zur numerischen Simulation der zeitlich-örtlichen Wasserstoffkonzentration erstellt. Mit diesem Modell wurden zwei Anwendungsfälle simuliert: (1) Veränderung der Wasserstoffverteilung als Funktion des Temperaturzyklus während des Mehrlagenschweißens und (2) für das Wartezeitintervall ≤ 48 h. Ein Vorteil des Diffusionsmodells ist die Simulation einer normierten Konzentration, d.h. zwischen „0“ (kein Wasserstoff) und „1“ (max. Konzentration), die auf experimentell ermittelte Wasserstoffkonzentrationen skaliert werden kann. T2 - 6. Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 20.02.2025 KW - Gründungsstrukturen KW - Offshore KW - Kaltrissbildung KW - Wasserstoff KW - Numerische Simulation PY - 2025 AN - OPUS4-62616 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Rhode, Michael A1 - Kannengiesser, Thomas A1 - Kromm, Arne T1 - In-service and repair welding of pressurized hydrogen pipelines–a review on current challenges and strategies N2 - Hydrogen is the energy carrier for a sustainable future without fossil fuels. As this requires a reliable transportation infrastructure, the conversion of existing natural gas (NG) grids is an essential part of the worldwide individual national hydrogen strategies, in addition to newly erected pipelines. In view of the known effect of hydrogen embrittlement, the compatibility of the materials already in use (typically low-alloy steels in a wide range of strengths and thicknesses) must be investigated. Initial comprehensive studies on the hydrogen compatibility of pipeline materials indicate that these materials can be used to a certain extent. Nevertheless, the material compatibility for hydrogen service is currently of great importance. However, pipelines require frequent maintenance and repair work. In some cases, it is necessary to carry out welding work on pipelines while they are under pressure, e.g., the well-known tapping of NG grids. This in-service welding brings additional challenges for hydrogen operations in terms of additional hydrogen absorption during welding and material compatibility. The challenge can be roughly divided into two parts: (1) the possible austenitization of the inner piping material exposed to hydrogen, which can lead to additional hydrogen absorption, and (2) the welding itself causes an increased temperature range. Both lead to a significantly increased hydrogen solubility in the respective materials compared to room temperature. In that connection, the knowledge on hot tapping on hydrogen pipelines is rare so far due to the missing service experiences. Fundamental experimental investigations are required to investigate the possible transferability of the state-of-the-art concepts from NG to hydrogen pipeline grids. This is necessary to ensure that no critical material degradation occurs due to the potentially increased hydrogen uptake. For this reason, the paper introduces the state of the art in pipeline hot tapping, encompassing current research projects and their individual solution strategies for the problems that may arise for future hydrogen service. Methods of material testing, their limitations, and possible solutions will be presented and discussed. KW - In-service KW - Welding KW - Hydrogen pipeline KW - Review PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638847 DO - https://doi.org/10.1007/s40194-025-02127-x SN - 0043-2288 SP - 1 EP - 24 PB - Springer Science and Business Media LLC AN - OPUS4-63884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Czeskleba, Denis A1 - Irfan, Muhammad Dary A1 - Wandtke, Karsten A1 - Kaiser, Sebastian A1 - Kannengießer, Thomas T1 - Wasserstoffdiffusion in hochfesten UP-Schweißverbindungen – einfacher als gedacht N2 - Hochfeste Baustähle werden im modernen Stahlbau aus wirtschaftlichen und konstruktiven Gründen zunehmend eingesetzt, z. B. im Gebäude-, Anlagen- oder Mobilkranbau. Durch den Einsatz von Stählen mit höheren 690 MPa) können durch die Reduzierung der Wanddicke erhebliche Gewichtsreduzierungen und geringere Verarbeitungskosten erreicht werden, insbesondere bei der Verwendung des Unterpulverschweißen (UP) durch seine hohe Abschmelzleistung. Aufgrund ihrer speziellen Mikrostruktur haben hochfeste Stähle eine begrenzte Duktilität und sind anfälliger für wasserstoffunterstützte Kaltrisse (HACC). Darüber hinaus führen große mittels UP geschweißter Blechdicken zu hohen Schweißeigenspannungen und langen Diffusionswegen für z.B. durch den Schweißprozess eingebrachten Wasserstoff. Abgesicherte Diffusionskoeffizienten für UP-Schweißungen dieser Festigkeitsklasse sind als Grundlage für die Abschätzung des Zeitintervalls einer möglichen verzögerten Kaltrissbildung oder für Nachwärmung zur Wasserstoffreduktion nur sehr begrenzt verfügbar. Aus diesem Grund wurden experimentelle Versuche zur mikrostruktur-spezifischen Diffusion in S690-Schweißungen durchgeführt. Dazu wurde ein thermomechanisch (TM) gewalzter bzw. vergüteter (QL) Zustand dieses Werkstoffs betrachtet, sowie das jeweilige charakteristische Schweißgut und WEZ. Dazu wurden den Schweißmikrostrukturen lokal Proben entnommen und über Permeations- bzw. Warmauslagerungsversuche die gefügespezifische Diffusion von Raumtemperatur bis 400°C charakterisiert. Im Gegensatz zu bekannten Effekten des Wärmebehandlungszustandes der Grundwerkstoffe auf die Diffusion in MSGSchweißverbindungen, zeigten die Wasserstoffdiffusionskoeffizienten über alle untersuchten Gefügezustände keine signifikanten Unterschiede, insbesondere nicht für die lokale WEZ diverser, untersuchter Streckenergiebereiche. Aus praktischer Anwendersicht können daher dickwandige UP-Verbindungen hinsichtlich einer verzögerten Wasserstoffdiffusion nur anhand der einfach ermittelbaren Diffusionskoeffizienten für den Grundwerkstoffkoeffizient beurteilt werden. Zudem zeigte sich, dass der unterschiedliche Walz- und Wärmebehandlungszustand (TM vs. QL) in UP-Schweißnähten eine untergeordnete Rolle für die Wasserstoffdiffusion und damit für die mögliche Zeitverzögerung der Kaltrissbildung hat. Ergänzende numerische Simulationen der Wasserstoffverteilung bestätigten das Verhalten. T2 - DVS Congress 2025 CY - Essen, Germany DA - 16.09.2025 KW - Unterpulverschweißen KW - Wasserstoffdiffusion KW - Wasserstoffunterstützte Kaltrissbildung KW - Wasserstoffrisse PY - 2025 SN - 978-3-96144-299-7 DO - https://doi.org/10.53192/DVSC20250330 VL - 401 SP - 330 EP - 340 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-64132 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Numerical simulation of weld heat input effect on microstructure and hydrogen diffusion in thick-walled S690 submerged arc welded joints N2 - High-strength, low-alloy (HLSA) steels such as S690 are an attractive option for heavy industries such as offshore wind turbines and peripheral equipment due to their combination of excellent mechanical properties and weldability. The construction of these thick-walled structures requires highly efficient welding processes such as submerged arc welding (SAW). However, SAW presents challenges related to delayed hydrogen assisted cold cracking (HACC). Despite its importance, the effect of different diffusion coefficients on the cold cracking susceptibility of different microstructures within SAW-welded S690 steels is not fully understood. For this reason, the present study focuses on comparing the cold cracking susceptibility of thermomechanically rolled (TM) or quenched and tempered (QL) variants of S690 steel. SAW was performed on specimens of both steel grades to produce weldments consisting of weld metal, heat-affected zone (HAZ), and base metal. Electrochemical hydrogen permeation tests (ISO 17081) were performed to determine the microstructure specific coefficients. Using the obtained coefficients, a numerical model was developed to identify the time- and microstructure-dependent local hydrogen diffusion and its influence on the distribution within the welds. The results showed that the TM grade exhibited slightly accelerated hydrogen diffusion compared to the QL grade, which is beneficial for hydrogen reduction and increases the HACC resistance. However, the further simulations with different ply sequences showed that the welding heat input (i.e. welding ply sequence) had a significantly higher effect on hydrogen accumulation. Specifically, increased welding heat input and increased thicknesses decrease hydrogen diffusivity. For this reason, microstructure-specific hydrogen diffusion played a minor role in thick-layer SAW joints compared to the need to control the welding parameters (layer sequence, individual layer thickness, welding heat input). T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - Hydrogen assisted cracking KW - Welding KW - High strength steels KW - Numerical simulation KW - Electrochemical permeation PY - 2025 AN - OPUS4-64158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen trap characterization in 200 and 1,000 bar charged CoCrNi medium entropy alloy compared to steel AISI 316L N2 - Multiple principal element alloys (MPEAs) represent a new class of metallic materials. MPEAs, such as the CoCrNi medium entropy alloy (MEA), have attracted considerable research attention as potential materials to replace, for example, austenitic steels in high-pressure hydrogen environments. Due to the relatively new alloy concept, studies on the specific hydrogen diffusion and trapping behavior of high-pressure hydrogen-charged CoCrNi MEAs are rare so far. For this reason, a CoCrNi-MEA was investigated and compared to an austenitic stainless steel, AISI 316L. Both materials were subjected to high pressure hydrogen loading for two different pressures: 200 bar and 1,000 bar. After charging, thermal desorption analysis (TDA) was used with three heating rates from 0.125 K/s to 0.500 K/s to clarify the specific hydrogen desorption and trapping behavior. To the best of our knowledge, this study is the first to characterize hydrogen diffusion and trapping in 1,000 bar high-pressure charged CoCrNi. For this purpose, the underlying TDA spectra were analyzed in terms of peak deconvolution into a metallurgically justifiable number of defined peaks. The individual peak temperatures and activation energies “EA” were calculated. The following conclusions can be drawn from the results obtained: (1) Exposure to 200 bar or 1,000 bar leads to an increase in hydrogen absorption, regardless of the material investigated, expressed by a significantly increased desorption rate at 1,000 bar. However, the effusion peaks typically occur only at high temperatures. The (2) TDA showed that a four-peak deconvolution scenario was sufficient to describe the trapping behavior and the "EA" indicated the dominance of irreversible traps. In addition, the average trapping energy is higher than in the 316L. The (3) charge pressure related hydrogen solubility was in the order of: CoCrNi-MEA < 316L for both pressures and (4) charging at 1000 bar results in an average concentration of 49 wt.ppm (CoCrNi-MEA) and > 75 wt.ppm (316L). In summary, the CoCrNi-MEA was characterized by a reduced solubility, but very deep entrapment compared to the 316L. For this reason, further application potentials of the MEA may arise. T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - Medium entropy alloy KW - Hydrogen KW - Trapping KW - Diffusion KW - High-pressure charging PY - 2025 AN - OPUS4-64160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Effect of Ti and Nb on hydrogen trapping in welded S690 HSLA steel and effect on delayed cold cracking N2 - Fine-grain, high-strength, low-alloy (HSLA) structural steels with yield strengths > 600 MPa are now the state of the art in construction applications such as mobile cranes and civil engineering. HSLA grades derive their strength from a combination of specific heat treatment and the underlying chemical composition. In this context, Ti or Nb are essential to obtain a fine-grained microstructure as well as the necessary carbides or nitrides for precipitation strengthening. In this context, the specific effect of Ti or Nb-rich compounds on hydrogen trapping and diffusion is well known for special laboratory cast alloys, but unknown for realistic steel compositions. For this reason, a series of S690Q-based alloys were synthesized, close to a real steel composition, but with well controlled Ti or Nb additions in different amounts. Specimens were obtained from these alloys by electrochemical discharge machining (EDM). The specimens were tested using the well-established electrochemical permeation technique. From the experimental results, the hydrogen diffusion coefficients and the analytical subsurface hydrogen concentration were calculated. In addition, the hydrogen trapping behavior at elevated temperatures was interpreted by thermal desorption analysis (TDA) using different heating rates of hydrogen charged samples. The results showed that in contrast to metallurgically "pure" laboratory cast alloys, realistic chemical compositions were similar in their hydrogen trapping behavior, despite some small differences. All investigated steel grades exhibited shallow and reversible hydrogen trapping, regardless of their chemical composition. Of course, the experiments only allowed the calculation of effective diffusion coefficients and trapping energies, which represent an average of the entire microstructure. Nevertheless, HSLA steels are typically joined by arc welding, which includes the risk of delayed hydrogen assisted cracking. From the point of view of welding practice, however, a more or less identical hydrogen diffusion behavior means that no special "metallurgically specific", justifiable measures need to be considered, despite the well-established processes such as "soaking" or dehydrogenation heat treatment. Of course, a closer look at the heat-affected zone (HAZ) or the weld metal of the specific welds is necessary. However, especially in the case of thick-walled welds, it is assumed that the weld metal and HAZ are similar to the base material due to the multi-layer welding, which results in multiple annealing cycles of the weld metal and HAZ. T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - Hydrogen assisted cracking KW - HSLA KW - Diffusion KW - Electrochemical permeation PY - 2025 AN - OPUS4-64156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component test for the assessment of in-service welding on/onto pressurized hydrogen pipelines N2 - Hydrogen is the energy carrier of tomorrow and requires a reliable large-scale transport infrastructure. In addition to new pipelines, the conversion of existing natural gas (NG) pipeline grids is an essential part. The transport of hydrogen is fundamentally different from that of NG, as hydrogen can be absorbed into the pipeline material. Given the effects of hydrogen embrittlement, the material compatibility (low alloy steels in a wide range of strengths and thicknesses) must be investigated. However, pipelines e.g. require maintenance or the need for installation of additional outlets with the necessity of welding on/onto the pipelines while they are still in service, i.e. with gas flow under high pressure, such as the well-known "hot tapping". This in-service welding poses challenges for hydrogen operations. The challenge can be roughly divided into the possible austenitization of the inner pipe material exposed to hydrogen, the welding itself, which causes an increased temperature range. Both lead to a significant increase in hydrogen solubility and diffusivity compared to room temperature. In addition, possible surface reactions of the present iron oxides (e.g. magnetite or hematite) with the hot hydrogen should be considered. In this context, the knowledge of hydrogen pipelines is scarce due to the lack of operational experience. Fundamental experimental investigations are required to investigate the transferability from NG to hydrogen pipeline grids. For this reason, the present study presents a specially designed mock-up / demonstrator concept for the realistic assessment of the welding process conditions. The mock-up was designed to allow in-situ temperature measurement during the welding process as well as ex-post sample extraction for quantification of the absorbed hydrogen concentration. For safety reasons, the required volume of pressurized hydrogen was limited by inserting a solid cylinder to ensure a 1 cm thick layer of hydrogen gas. Welding experiments on the DN60 and DN200 pressurized mock-ups showed the possibility of safe welding on or onto pressurized hydrogen pipelines. Indeed, the austenitizing temperature was reached on the inner surface of the pipeline, especially on thinner-walled pipelines, using current welding parameter recommendations. This corresponded to an increased hydrogen uptake in the welded area of several ppm. From this point of view, the suggested component concept is a viable strategy for the screening of several materials and welding parameter combinations under realistic operational conditions. T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - In-service welding KW - Pipeline KW - Hydrogen KW - Component test PY - 2025 AN - OPUS4-64159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component-test for determination of welding residual stresses and their effect on stress relief cracking in thick-walled welds N2 - Controlling the residual stress level during welding of creep-resistant Cr-Mo-V steels is crucial to avoid so called stress relief cracking (SRC) during post weld heat treatment (PWHT) of large-scale components. In the present study, a laboratory scale test specimen (slotted sample with 400 mm width, 400 mm length and 25 mm thickness) was used to simulate thick-walled component welds made of 13CrMoV9-10. The aim was to identify the level and distribution of residual stresses to evaluate the suitability of the specimen for laboratory based SRC testing. High restraint was ensured by the specimen geometry with a narrow welding gap in the center. This gap was filled by multi-layer submerged arc welding. Two specimens were welded with identical parameters and compared in the as-welded state and after PWHT (705 °C for 10 h). Neutron diffraction was used to determine the residual stresses in the weld metal, the heat-affected zone (HAZ) and the base material at different depths longitudinal, transverse, and normal to the welding direction. The experiments were performed on the former instrument E3 of the research reactor BER II of Helmholtz-Zentrum Berlin (HZB), Germany. Complementarily, laboratory X-ray diffraction was applied to characterize the surface residual stresses. In the welded condition, especially in the weld metal and the adjacent HAZ, the longitudinal residual stresses reached values of up to 1,000 MPa to 1,200 MPa due to the increasing strength and hardness of the CrMoV-material during welding. The conducted welding experiments revealed that way higher residual stresses in the welded joint have to anticipated before the PWHT is performed than it was expected in advance. This demonstrated the necessity of suitable component-like welding tests as they must ensure realistic mechanical stiffness (hindered shrinkage of welding joint by slotted self-restraint sample) and heat dissipation conditions (definition of minimum welding joint thickness vs. welding process-specific heat input). T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - Component test KW - Submerged arc welding KW - Post weld heat treatment KW - Residual stresses KW - Neutron diffraction PY - 2025 AN - OPUS4-64161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Rhode, Michael A1 - Kannengiesser, Thomas A1 - Kromm, Arne T1 - In-service and repair welding of pressurized hydrogen pipelines–a review on current challenges and strategies N2 - Hydrogen is the energy carrier for a sustainable future without fossil fuels. As this requires a reliable transportation infrastructure, the conversion of existing natural gas (NG) grids is an essential part of the worldwide individual national hydrogen strategies, in addition to newly erected pipelines. In view of the known effect of hydrogen embrittlement, the compatibility of the materials already in use (typically low-alloy steels in a wide range of strengths and thicknesses) must be investigated. Initial comprehensive studies on the hydrogen compatibility of pipeline materials indicate that these materials can be used to a certain extent. Nevertheless, the material compatibility for hydrogen service is currently of great importance. However, pipelines require frequent maintenance and repair work. In some cases, it is necessary to carry out welding work on pipelines while they are under pressure, e.g., the well-known tapping of NG grids. This in-service welding brings additional challenges for hydrogen operations in terms of additional hydrogen absorption during welding and material compatibility. The challenge can be roughly divided into two parts: (1) the possible austenitization of the inner piping material exposed to hydrogen, which can lead to additional hydrogen absorption, and (2) the welding itself causes an increased temperature range. Both lead to a significantly increased hydrogen solubility in the respective materials compared to room temperature. In that connection, the knowledge on hot tapping on hydrogen pipelines is rare so far due to the missing service experiences. Fundamental experimental investigations are required to investigate the possible transferability of the state-of-the-art concepts from NG to hydrogen pipeline grids. This is necessary to ensure that no critical material degradation occurs due to the potentially increased hydrogen uptake. For this reason, the paper introduces the state of the art in pipeline hot tapping, encompassing current research projects and their individual solution strategies for the problems that may arise for future hydrogen service. Methods of material testing, their limitations, and possible solutions will be presented and discussed. KW - In-service KW - Hydrogen KW - Repair welding KW - Pipeline PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638944 DO - https://doi.org/10.1007/s40194-025-02127-x SN - 0043-2288 SP - 1 EP - 24 PB - Springer Science and Business Media LLC AN - OPUS4-63894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Thermal desorption spectroscopy for identification of diffusion and trapping in CoCrFeMnNi high-entropy alloy at 1,000 bar high-pressure hydrogen N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s). The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. Despite the activation energy, the trap occupancy rate must be considered in terms of a pressure-related hydrogen absorption. The derived apparent hydrogen solubility was in the order: 316L < CoCrFeMnNi-HEA for both charging pressures. Especially, the 1,000 bar values lead to noteworthy results with > 70 wt.ppm for the AISI 316L and >130 wt.ppm for the CoCrFeMnNi. In fact, both the hydrogen diffusion and trapping data on gaseous high-pressure hydrogen charged HEAs are rare so far. The results of the present study allow a deeper understanding of hydrogen trapping in the regarded CoCrFeMnNi-system. T2 - 1st Conference on Hydrogen in Materials Science and Engineering (H2-MSE) CY - Freiburg, Germany DA - 11.02.2025 KW - High-entropy alloy KW - Hydrogen diffusion KW - High-pressure charging KW - Thermal desorption analysis PY - 2025 AN - OPUS4-62543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Hadick, C. A1 - Schu, K. T1 - Quantification of hydrogen uptake during in-service hydrogen pipeline welding N2 - Hydrogen must be transported on a large scale from producers to consumers to ensure the energy transition. The necessary pipeline grid is achieved by conversion of the natural gas (NG) grid and building new pipelines. Welding during service as part e.g. of “hot-tapping” is unavoidable for maintenance/repair/expansion. Based on existing studies, the basic material compatibility of (low-alloyed) pipeline steels with hydrogen is postulated. However, this cannot be assumed for the case of in-service welding on pipelines in pressurized condition. The reason is the increased temperature e.g. by preheating and (in particular) during welding of the single passes. As a result, the inner pipeline surface undergoes multiple short-term heating but to high temperatures. In particular, the first passes can result in a temperature close to the austenitic transformation of the material for small wall thicknesses. Both increase the hydrogen uptake into the welded joint. If hydrogen embrittlement is likely to occur, depends on the hydrogen uptake, which must be quantified. For this purpose, welding experiments on pressurized demonstrators were conducted. The hydrogen uptake at 100 bar was compared to reference experiments with nitrogen. A new sample extraction routine for the quantification of the weld-zone specific hydrogen uptake was established. Comprehensive experiments with different steels (P235, L360, L485), wall thicknesses (4.1 mm to 7.8 mm) and diameters (DN50 and DN200) were conducted. In addition, the influence of the welding layer sequence on the hydrogen uptake between single- and multi-layer welds was investigated. Analytical approaches were used to approximate the hydrogen uptake in the respective weld zones. The main findings were that the layer sequence and especially the wall thickness have a large influence on the hydrogen uptake. T2 - 20th Pipeline Technology Conference ptc2025 CY - Berlin, Germany DA - 06.05.2025 KW - In-service KW - Hydrogen KW - Pipeline KW - Repair welding KW - component test PY - 2025 SP - 1 EP - 12 AN - OPUS4-63166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen diffusion in thick-walled S690 SAW joints: Part 1 - Experimental determination of microstructure dependent diffusion coefficients N2 - S690 steels are widely used in heavy-duty applications, such as structural components, mobile cranes, and industrial plant construction, owing to their high strength and weldability. However, thick-plate submerged arc welding (SAW) can introduce elevated hydrogen levels and residual stresses that promote time-delayed hydro-gen-assisted cold cracking (HACC). Accurate, microstructure-specific diffusion data are scarce, limiting pre-dictive HACC assessments. This study presents an experimental determination of hydrogen diffusion coeffi-cients (DH) in two S690 variants: thermomechanically rolled (S690MC) and quenched and tempered (S690Q). Multi-layer SAW welds were produced from 30 mm-thick plate material at three heat input levels, and diffusion membranes were extracted from weld metal (WM), heat-affected zone (HAZ), and base material (BM). Hydro-gen permeation tests, conducted in accordance with DIN EN ISO 17081, yielded time-normalized flux curves from which DH was derived using the inflection-point method. At room temperature, DH values ranged from 6 × 10⁻⁵ to 9 × 10⁻⁵ mm²/s across all regions and heat inputs, with no significant difference between S690MC and S690Q. Weld metal exhibited marginally lower DH, attributed to enhanced hydrogen trapping, while base mate-rial measurements showed greater variability. These microstructure-resolved diffusion coefficients fill a critical data gap and provide essential input for the numerical simulations presented in Part 2. The results also support practical guidelines for mitigating HACC risk through the optimization of welding parameters. T2 - 78th IIW Annual Assembly, Meeting of Commission II-C CY - Genoa, Italy DA - 22.06.2025 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - High strength steels KW - Hydrogen Diffusion KW - Electrochemical permeation PY - 2025 AN - OPUS4-63540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Weld heat input effect on microstructure and hydrogen diffusion in thick-walled S690 submerged arc welded joints N2 - High-strength, low-alloy (HLSA) steels such as S690 are an attractive option for heavy industries such as offshore wind turbines and peripheral equipment due to their combination of excellent mechanical properties and weldability. The construction of these thick-walled structures requires highly efficient welding processes such as submerged arc welding (SAW). However, SAW faces challenges related to delayed hydrogen assisted cold cracking (HACC). Despite its importance, the effect of different diffusion coefficients on the cold cracking susceptibility of different microstructures within SAW-welded S690 steels is not fully understood. For this reason, the present study focuses on comparing the cold cracking susceptibility of thermomechanically rolled (TM) or quenched and tempered (QL) variants of S690 steel. Submerged arc welding was performed on both steel grades at different welding heat inputs. From these thick-walled welds, metallic membranes were extracted from the weld metal, the heat-affected zone (HAZ), and the two base metals. The specimens were subjected to electrochemical hydrogen permeation tests (according to ISO 17081) to determine the microstructure-specific hydrogen diffusion coefficients. In general, increased welding heat input and thickness decreased the hydrogen diffusion coefficients, i.e., the time required for hydrogen diffusion increased. In addition, the results showed that the TM grade exhibited slightly accelerated hydrogen diffusion coefficients compared to the QL grade, which is beneficial for hydrogen reduction and increases the HACC resistance. As a result, the microstructure-specific assessment of hydrogen diffusion in the BM, HAZ or WM of the SAW joint was less important for a given set of welding parameters compared to other welding processes such as gas metal arc welding (GMAW). The reason is that in multilayer SAW, the relatively large welding heat input and multiple annealing resulted in similar microstructures, resulting in very close hydrogen diffusion coefficients. From this point of view, it is sufficient to characterize the hydrogen diffusion coefficients of both the weld metal and the base material. T2 - 78th IIW Annual Assembly and International Conference CY - Genoa, Italy DA - 26.06.2025 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Diffusion KW - Electrochemical permeation KW - Microstructure PY - 2025 AN - OPUS4-63543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen diffusion in thick-walled S690 SAW joints: Part 2 - Predictive modeling of welding heat input and microstructure influence N2 - High-strength low-alloy (HSLA) steels such as S690 are widely employed in thick-walled welded structures, where hydrogen-assisted cold cracking (HACC) remains a persistent concern. While microstructure-specific hydrogen diffusion coefficients (DH) for weld metal (WM), heat-affected zone (HAZ), and base material (BM) were experimentally established in Part 1 of this study, their quantitative influence on hydrogen accumulation and effusion has not yet been fully clarified. This work presents a transient, spatially resolved numerical model for simulating hydrogen transport in multi-pass submerged arc welds. The model integrates experimentally determined DH values with realistic thermal cycles and temperature-dependent boundary conditions. Developed in Python, the simulation tool is purpose-built for hydrogen diffusion in welded joints and offers a focused, transparent alternative to general-purpose finite element platforms. Parametric analyses demonstrate that, although the diffusion coefficients vary by up to 50 %, their impact on overall hydrogen retention is minor. In contrast, welding parameters such as plate thickness, bead geometry, cooling time (t₈/₅), and interpass tem-perature exert a dominant influence on hydrogen distribution. Despite clear microstructural differences between the thermomechanically rolled (S690MC) and quenched and tempered (S690Q) variants, including hardness softening versus hardening in the heat-affected zone of the (pen)ultimate weld bead, the simulations confirm that their diffusion behavior and hydrogen solubility are closely aligned. Consequently, differences in diffusivity and solubility exert only a minor influence on hydrogen retention compared to thermal exposure and joint geometry. These findings support the interchangeable use of both steel grades in terms of HACC risk due to hydrogen diffusion kinetics, under comparable welding conditions. T2 - 78th IIW Annual Assembly, Meeting of Commission II-C CY - Genoa, Italy DA - 22.06.2025 KW - Hydrogen assisted cracking KW - Numerical simulation KW - Hydrogen diffusion PY - 2025 AN - OPUS4-63541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Czeskleba, Denis A1 - Fleißner-Rieger, H. A1 - Nietzke, Jonathan A1 - Kannengießer, Thomas T1 - Combined heating rate and restraint condition effect on stress relief cracking during PWHT of thick-walled Cr–Mo-V steel SAW joints N2 - Creep-resistant steels such as 13CrMoV9-10 are utilized in the manufacture of thick-walled pressure vessels and are typically joined by submerged arc welding (SAW). However, these materials are susceptible to stress relief cracking (SRC) if the required post weld heat treatment (PWHT) is not applied correctly. Existing PWHT guidelines, encompassing heating rate and dwell (or holding) time at a given temperature, are derived from a synthesis of empirical knowledge and typically free-shrinkage weld experiments to assess the susceptibility to SRC. Therefore, this study discusses the combined effect of the PWHT heating rate under free-shrinkage compared to restrained shrinkage. Welding experiments were conducted (using plates with a thickness of 25 mm) for both shrinkage conditions for a variety of heating rates and maximum temperatures. In-situ acoustic emission analysis was used to locate propagating SRCs during PWHT. Hardness measurements, mechanical property characterization (Charpy impact strength), and microstructure correlation were used to evaluate the SRC susceptibility. The results suggested that the influence of heating rate could not be directly related to SRC formation and that the initial weld microstructure prior to PWHT was more relevant in terms of very high hardness in the coarse grain heat affected zone, especially that of the last beads in the top layer of the welding sequence. This was seen in the form of random, unexpected SRC occurrence in only one specimen at a heating rate commonly used in welding practice (approximately 100 K/h). In this context, the additional effect of an external shrinkage restraint on SRC must be considered in the form of increasing mechanical loads during welding, which are typically not within the scope of welding practice. To mitigate the probability of SRC during PWHT, it is imperative to reduce the welding heat input and to restrict the structural shrinkage restraint of the weld joint. KW - Component test KW - Stress relief cracking KW - PWHT KW - Creep-resistant steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631439 DO - https://doi.org/10.1007/s40194-025-02062-x SN - 1878-6669 SP - 1 EP - 17 PB - Springer Nature AN - OPUS4-63143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaiser, Sebastian A1 - Erxleben, Kjell A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Herausforderungen beim Schweißen im Betrieb an Wasserstoff-Ferngasleitungen N2 - Als Energieträger der Zukunft kommt grünem Wasserstoff große Bedeutung bei der Energiewende und der zukünftigen, nachhaltigen Energieversorgung zu Teil. Zum effizienten und sicheren Transport des Wasserstoffs ist die Bereitstellung einer Pipeline-Infrastruktur geplant. Die meisten Länder verfolgen hierbei die Strategie der Umwidmung bestehender Erdgastransportleitungen, ergänzt durch Errichtung neuer Pipelines. Die bestehenden Erdgasnetze sind dabei aus unterschiedlichsten Rohrgeometrien und Materialien zusammengesetzt. Bei der Umwidmung von Erdgaspipelines zum Transport von Wasserstoff müssen daher Fragen der Materialverträglichkeit hinsichtlich des als Wasserstoffversprödung bekannten Phänomens der Beeinträchtigung der mechanischen Eigenschaften metallischer Werkstoffe durch Wasserstoff betrachtet werden. Bisherige Forschungsergebnisse und Feldversuche deuten darauf hin, dass die niedriglegierten, ferritischen Stähle, aus denen die Ferngasleitungen des Erdgasnetzes überwiegend bestehen, für den Transport von Wasserstoff unter normalen Betriebsbedingungen geeignet sind. Eine Frage, die bislang weniger Aufmerksamkeit erhielt, ist die, wie sich das Schweißen im Betrieb an Wasserstoffpipelines auf die Materialkompatibilität auswirkt. Im Erdgasnetz sind etablierte Verfahren wie beispielsweise das „Hot-Tapping“ unumgänglich für die Instandhaltung und Erweiterung des Netzes. Hierbei werden an eine im Betrieb befindliche Pipeline geteilte T-Stücke aufgeschweißt, über die die Pipeline dann mit geeigneten Bohrvorrichtungen während eines ununterbrochenen Betriebs angebohrt werden kann. Um zu beurteilen, ob diese Verfahren gefahrlos auf Wasserstoffpipelines übertragen werden können, müssen Problemstellungen betrachtet werden, die sich durch den Wärmeeintrag ins Material beim Schweißen ergeben. Wasserstofflöslichkeit und Diffusionsgeschwindigkeit sind temperaturabhängig. Erhöhte Temperaturen könnten eine Wasserstoffaufnahme ins Material bewirken, die zu einer kritischen Degradation der mechanischen Eigenschaften des Materials führen könnte. Die Temperaturen, die beim Schweißen erreicht werden, führen lokal zur Überschreitung der Austenitisierungstemperatur. Austenit weist eine deutlich höhere Löslichkeit von Wasserstoff auf, während die Diffusionsgeschwindigkeit des Wasserstoffs in dieser Phase deutlich herabgesetzt ist. Es wird vermutet, dass dies zu einer lokal erhöhten Wasserstoffkonzentration führt. Damit geht ein erhöhtes Risiko einer kritischen Materialdegradation einher. Durch die lange Zeitdauer beim Schweißen von mehrlagigen Rundkehlnähten an großen Pipelines, einschließlich einer möglichen Vorwärmprozedur, ist weiterhin zu klären, ob der aus Anwendungsfällen in der Petrochemie bekannte Hochtemperaturwasserstoffangriff auftritt. Der vorliegende Beitrag liefert einen Überblick über das Schweißen im Betrieb an Gaspipelines, hierbei auftretenden Herausforderungen bei der möglichen Anwendung auf Wasserstoffleitungen. Dabei werden auch aktuelle Forschungsprojekte zum Thema Schweißen an Wasserstoffpipelines im Betrieb eingehend diskutiert. In diesem Zusammenhang werden erste Ergebnisse des gemeinschaftlichen Forschungsprojektes „H2-SuD: Einfluss des Schweißens auf die Wasserstoffaufnahme und Degradation im Betrieb befindlicher H2-Ferngasleitungen“ des Deutschen Vereins des Gas- und Wasserfaches (DVGW), der Bundesanstalt für Materialforschung und -prüfung (BAM) und deutscher Gasnetzbetreiber (Open Grid Europe, ONTRAS Gastransport, u.v.m.) präsentiert. T2 - 53. Sondertagung - Schweißen im Anlagen-und Behälterbau 2025 CY - Munich, Germany DA - 18.03.2025 KW - Materialdegradation KW - Pipeline KW - Schweißen KW - Wasserstoff PY - 2025 SN - 978-3-96144-290-4 (Print) SN - 978-3-96144-291-1 (E-Book) VL - 2025 SP - 106 EP - 115 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-62911 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Characterization of hydrogen trapping in a CoCrFeMnNi high-entropy alloy charged up to 1000 bar high-pressure hydrogen N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s), see Fig. 1a to d. The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. In addition, the trap occupancy rate must be considered in terms of a pressure-related hydrogen absorption. The derived apparent hydrogen solubility was in the order: 316L < CoCrFeMnNi-HEA for both charging pressures. Especially, the 1,000 bar values lead to noteworthy results with > 70 wt.ppm for the AISI 316L and >130 wt.ppm for the CoCrFeMnNi. In fact, both the hydrogen diffusion and trapping data on gaseous high-pressure hydrogen charged HEAs are rare so far. The results of the present study allow a deeper understanding of hydrogen trapping in the regarded CoCrFeMnNi-system. T2 - 78th IIW Annual Assembly and International Conference CY - Genoa, Italy DA - 26.06.2025 KW - Hydrogen KW - Thermal desorption analysis KW - High-pressure charging KW - Trapping KW - Diffusion PY - 2025 AN - OPUS4-63542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaiser, Sebastian A1 - Erxleben, Kjell A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Schweißen im Betrieb an Wasserstoff-Ferngasleitungen N2 - Wasserstoff gilt als Energieträger für die Erreichung der Klimaziele und einer nachhaltigen zukünftigen Energieversorgung. Für den notwendigen Transport des Wasserstoffs in großem Maßstab und über weite Entfernungen ist eine zuverlässige Pipeline-Infrastruktur erforderlich. Umfassende weltweite Forschungsprojekte deuten auf die allgemeine Kompatibilität der verwendeten überwiegend ferritischen Stähle für die vorgesehenen Betriebsbedingungen von bis zu 60 °C bei 100 bar Wasserstoff hin. Dies ist jedoch nicht direkt übertragbar auf schweißtechnische Reparatur- und Wartungsarbeiten an im Betrieb befindlichen Pipelines. Ein im Erdgasnetz etabliertes Verfahren stellt das „Hot-Tapping“ dar, bei dem eine unter Druck stehende Pipeline im Betrieb angebohrt wird. Hierfür kommt ein an die Rohrleitung geschweißtes Formstück zum Einsatz, das die Montage der Bohr-/Lochschneidemaschine ermöglicht. In den Richtlinien EIGA 121/14 bzw. AIGA 033/14 wird darauf hingewiesen, dass das Anbohren von Wasserstoffleitungen kein Routineverfahren darstellt: “[…] a hydrogen hot-tap shall not be considered a routine procedure […]“. Dieser Aussage liegt unter anderem zugrunde, dass das Anschweißen des Formstücks an das Rohr und alle zu erwartenden Wärmebehandlungen vor und nach dem Schweißen eine lokale Temperaturerhöhung verursachen. Insbesondere auch an der Rohrinnenfläche, die dem Wasserstoff ausgesetzt ist. Diese erhöhten Temperaturen begünstigen die Absorption und Diffusion von Wasserstoff in das Material. Besonders zu beachten ist außerdem die lokal auftretende kurzzeitige Austenitisierung des Materials, die eine lokal stark erhöhte Wasserstoffkonzentration verursachen kann. Aus den genannten Gründen gibt diese Studie einen kurzen Überblick über die derzeit weltweit verfügbaren Forschungsprojekte zum Schweißen von Wasserstoff-Pipelines im Betrieb. Vorgestellt werden unter anderem erste Ergebnisse des Kooperationsforschungsprojektes H2SuD, das derzeit an der BAM bearbeitet wird. T2 - 6. Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 20.02.2025 KW - Materialdegradation KW - Pipeline KW - Schweißen KW - Wasserstoff PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632731 SN - 978-3-8440-9961-4 SN - 978-3-8191-0041-3 DO - https://doi.org/10.21268/20250506-12 SN - 2364-0804 SN - 3052-3524 N1 - Serientitel: Fortschrittsberichte der Materialforschung und Werkstofftechnik – Series title: Bulletin of Materials Research and Engineering VL - 15 SP - 381 EP - 390 PB - Shaker Verlag CY - Düren AN - OPUS4-63273 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Czeskleba, Denis A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Vermeidung von Kaltrissen in UP-Dickblechschweißungen aus hochfesten Stählen N2 - Der Einsatz hochfester Stähle wie S690 erlaubt durch geringeren Materialeinsatz nicht nur eine immer wichtiger werdende Verringerung von CO₂-Emissionen, sondern auch eine effektive Kosten- und Gewichtsreduktion dickwandiger Bauteile. Insbesondere bei Wandstärken von bis zu 200 mm ist das Unterpulver- (UP-)Mehrdrahtschweißen aufgrund seiner hohen Effizienz eine gängige Praxis. Allerdings steigt bei hochfesten Stählen, hier vorliegend S690, die Gefahr wasserstoffunterstützter Kaltrisse (HAC), aufgrund ihrer Mikrolegierungskonzepte im Zusammenspiel mit hohen Eigenspannungen aus dem Schweißprozess und resultierend aus hohen Bauteilsteifigkeiten. Zusätzlich kann die erhebliche Aufmischung von Grund- und Zusatzwerkstoff beim UP-Schweißen zu risskritischen Gefügen führen, in denen der diffusible Wasserstoff besonders schädlich wirkt. Für Gefüge UP-geschweißter Bauteile liegen keine gesicherten Daten bezüglich Wasserstoffdiffusionskoeffizienten bzw. HAC-Rissanfälligkeit vor. Insbesondere die mikrostrukturabhängige Diffusion von durch den UP-Schweißprozess eingebrachtem Wasserstoff war nicht hinreichend gesichert. Ziel des Forschungsvorhabens war es daher, einen Beitrag zur kaltrisssicheren UP-Schweißverarbeitung hochfester Dickbleche zu leisten. Hierzu wurden systematisch unterschiedliche GW (S690 TM/QL) untersucht, die sich insbesondere in ihren Mikrostrukturen unterscheiden. Diese zeigten in Voruntersuchungen stark divergente Härteverteilungen im Besonderen in der letzten Lage der Schweißung, sodass ein ebenfalls stark divergentes Diffusionsverhalten postuliert wurde. Zunächst wurde der Wasserstoffeintrag über die Draht-Pulver-Kombination gemäß ISO 3690 ermittelt. Anschließend erfolgten mehrlagige Schweißungen sowohl unter freiem Schrumpfen als auch unter äußerer Zwängung. Eine detaillierte Gefügecharakterisierung und mechanisch-technologische Prüfungen, sowie Eigenspannungsmessungen ermöglichten die Bewertung der Rissanfälligkeit bei variierter Wärmeführung (schweißgeschwindigkeitsgesteuert). Zur quantitativen Beschreibung der Wasserstoffdiffusion wurden das Schweißgut (SG), die Wärmeeinflusszone (WEZ) und die Grundwerkstoffe (GW) mittels elektrochemischer Beladung und Trägergasheißextraktion (TGHE), sowie Permeationsversuchen untersucht. Basierend auf den ermittelten Diffusionskoeffizienten wurden numerische Modelle erstellt, um den Einfluss verschiedener Diffusionskoeffizienten auf die Wasserstoffverteilung in der Schweißnaht zu evaluieren. Entgegen dem Postulat wurden keine signifikanten Unterschiede in der Wasserstoff-Diffusionsgeschwindigkeit gemessen. Beide GW-Klassen (QL vs. TM) als auch das SG und die WEZ wiesen für diesen Werkstofftyp charakteristische Diffusionskoeffizienten mit nur geringen Unterschieden auf. Dies zusammen mit den nur sehr geringen Unterschieden in der Ausprägung der Eigenspannungen und mechanisch-technologischen Eigenschaften der Nähte, weisen auf eine hohe Kaltrisssicherheit hin. Die in allen Untersuchungen geringen Unterschiede zwischen QL und TM sprechen, hinsichtlich des HAC-Risikos aufgrund einer differenten Wasserstoffdiffusion, für die Austauschbarkeit der beiden Werkstoffe in der Produktion. KW - Wasserstoffrisse KW - Unterpulverschweißen KW - Wasserstoffdiffusion PY - 2025 SP - 1 EP - 150 AN - OPUS4-63127 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengießer, Thomas A1 - Czeskleba, Denis T1 - Simulation of hydrogen distribution in submerged arc welded heavy plates as tool for evaluating cold cracking sensitivity for offshore structures N2 - Foundation structures for offshore wind turbines are typically made of heavy plate struc-tural steels, such as S420ML, welded by submerged arc welding. Due to the welding process conditions, higher amounts of hydrogen can be introduced. In this context, large plate thicknesses result in long diffusion paths and a prolonged diffusion time for hydrogen at ambient temperature and possible delayed hydrogen-assisted cold cracking. As a result, hydrogen can accumulate in areas of high mechanical stress and strain. Due to the delayed diffusion, a minimum waiting time of up to 48 h must be observed before non-destructive testing can be performed. In addition, the assessment of possible cold crack locations is very complex. For this reason, a numerical model of a component-like weld test was developed to simulate the temperature field during welding and subsequent cooling. A hydrogen diffusion model based on the temporal-local temperature distribution was established. It was applied to simulate the change of hydrogen distribution as a function of temperature cycle during multi-layer welding and further for the entire waiting time interval ≤ 48 h. As a result, crack critical areas could be evaluated in terms of accu-mulated hydrogen. An advantage of the diffusion model is the simulation of a normalized concentration, i.e. between "0" (no hydrogen) and "1" (max. concentration), which can be scaled to experimentally determined hydrogen concentrations. Finally, selected results for increased real hydrogen ingress are presented, which confirm the relatively high crack resistance of the S420 submerged arc welded joint. KW - Hydrogen assisted cracking KW - Diffusion KW - Numerical simulation KW - Offshore steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632416 DO - https://doi.org/10.21268/20250507-6 SP - 1 EP - 12 PB - Technische Universität Clausthal CY - Clausthal-Zellerfeld, Deutschland AN - OPUS4-63241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Hadick, C. A1 - Schu, K. T1 - Component test concept for evaluation of in-service welding on pressurized hydrogen pipelines N2 - Hydrogen is set as the energy carrier of tomorrow and most countries will achieve large-scale hydrogen transport through the conversion of the natural gas (NG) grid and the construction of new pipelines. The interaction between hydrogen and the pipeline materials differs fundamentally from that of NG, as hydrogen is readily absorbed into the material. Considering the possible hydrogen embrittlement (HE), the compatibility of the pipeline materials (low-alloyed steels with a wide strength/thickness range) must be investigated. However, pipelines require intervention for maintenance, repair, or grid expansion with welding on/onto the pipelines while in service, i.e. the well-known "hot tapping" and "plugging" or “stoppling”. The challenges compared to NG can be broadly divided into the possible austenitization of the inner pipe material exposed to hydrogen and the welding itself. Both result in a significant increase in hydrogen solubility and could potentially pose challenges in terms of HE. Emphasis is placed on the word "could" because knowledge of "hot tapping" on hydrogen pipelines is scarce due a lack of service experience. To this end, this study proposes a concept for a component-like demonstrator with the objectives: (1) safe feasibility of "hot tapping" on pressurized model hydrogen pipeline sections, (2) facilitate ex-post sample extraction for the purpose of quantifying the absorbed hydrogen concentrations, and (3) ensure in-situ temperature measurement during welding to monitor the pipeline surface temperature. For safety reasons in the event of an unintentional "burn-through", a solid cylinder was inserted in the demonstrator to restrict the hydrogen gas volume to a small, pressurized layer. Reference pipeline surface temperature measurements were ensured on comparable, unpressurized geometries. The investigated range of welding conditions was investigated for representative material/thickness combinations (DN50 to DN200), suggesting the feasibility of the demonstrator for the determination of reliable in-service welding conditions for both installed and new pipelines for hydrogen service. T2 - 20th Pipeline Technology Conference ptc2025 CY - Berlin, Germany DA - 06.05.2025 KW - In-service KW - Hydrogen KW - Pipeline KW - Repair welding KW - component test PY - 2025 SP - 1 EP - 11 AN - OPUS4-63168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Mikrostrukturspezifische Wasserstoffdiffusion in UP-Schweißverbindungen hochfester Stahlgrobbleche N2 - Hochfeste Baustähle sind für den sogenannten, modernen Stahlleichtbau im Gebäude-, Anlagen- oder Mobilkranbau nicht mehr wegzudenken. Durch den Einsatz dieser Stähle mit Streckgrenzen ≥ 690 MPa können durch die Reduzierung der Wanddicke kann eine erhebliche konstruktive Gewichtsreduzierung erreicht werden. Dies führt zudem zu weiteren sekundären Vorteilen, wie geringeren Schweißverarbeitungskosten, da u.a. die zu füllenden Nahtquerschnitte kleiner sind. Für hochfeste Grobbleche kommt dabei insbesondere das Unterpulverschweißen (UP) zum Einsatz, das durch seine hohe Abschmelzleistung gekennzeichnet ist. Allerdings haben hochfeste Stahlgrobbleche aufgrund ihrer Mikrostruktur eine von vornherein begrenzte Duktilität ggü. niederfesten Stählen und sind per se anfälliger für verzögerte, wasserstoffunterstützte Kaltrissbildung Zudem führt die große Bleckdicke einerseits zu hoher konstruktiver Steifigkeit der Komponenten (mit der Folge erhöhter Eigenspannungen) und andererseits durch die dicken Schweißlagen zu langen Diffusionswege für den Wasserstoff, welcher bspw. durch feuchtes Schweißpulver in die Naht gelangen kann. Hieraus ergeben sich zwei Schwierigkeiten: (1) bis zu welcher Zeit mit einer verzögerten Rissbildung bei Raumtemperatur zu rechnen, wenn keine weitere Wärmebehandlung zur Reduktion des Wasserstoffes erfolgt bzw. (2) wenn diese notwendig ist, bei welche Temperatur dies erfolgen sollte. Dazu sind abgesicherte Diffusionskoeffizienten für den Wasserstoff in UP-Schweißungen notwendig, u.a. für numerische Simulationen. Diese Koeffizienten sind bisher nur äußert lückenhaft verfügbar. Aus diesem Grund wurden mikrostrukturspezifische, elektrochemische Permeationsversuche (nach ISO 17081) und Warmauslagerungsversuche mit TGHE an UP-Schweißverbindungen durchgeführt. Dazu wurden ein thermomechanisch (TM) gewalzter bzw. vergüteter (QT) Grundwerkstoff betrachtet, sowie das Schweißgut und die Wärmeeinflusszone (WEZ). Interessanterweise (und im Gegensatz zu Effekten des Wärmebehandlungszustandes auf die Diffusion in MSG-Schweißverbindungen) zeigten die UP-Schweißmikrostrukturen kaum signifikante Unter-schiede im Diffusionsverhalten von WEZ und Schweißgut. Dies ist auf den positiven Ef-fekt des mehrfachen Anlassens der Mikrostruktur durch die Mehrlagenschweißung zu-rückzuführen. Aus praktischer Anwendersicht können daher dickwandige UP-Verbindungen ausschließlich anhand der einfach ermittelbaren Diffusionskoeffizienten für den Grundwerkstoff beurteilt werden. Zudem zeigte sich, dass der Walzzustand (QT vs. TM) in Grobblechen gegenüber Dünnblechen eine untergeordnete Rolle für die Wasserstoffdiffusion bildet. Ergänzende numerische Simulationen zeitabhängigen Wasserstoffdiffusion bestätigten das Verhalten. T2 - DGM Arbeitskreis Wasserstoff CY - Neu-Isenburg, Germany DA - 26.05.2025 KW - Wasserstoff KW - Kaltrissbildung KW - Diffusion KW - Numerische Simulation KW - Permeation PY - 2025 AN - OPUS4-63235 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Vereinfachte Prüfmethode zur Bewertung der Gefahr wasserstoffunterstützter Kaltrisse (HACC) beim Lichtbogenschweißen hochfester Stähle N2 - Die Präsentation gibt einen Kurzüberblick über die Versuchsmethodik und den erreichten Projektfortschritt des IGF-Projektes 01IF22624N bzw. DVS-Nr. 01.3410. Ziel der Untersuchungen ist eine Methodik für eine vereinfachte Probenform zur Bewertung der Kaltrissanfälligkeit durch Wasserstoff bei hochfesten, geschweißten Stählen. Dazu wird ISO 3690 (Quantifizierung des H-Gehaltes) mit direkt prüfbaren Querzugproben kombiniert, die die realistische Bewertung der Schweißnaht unter industriepraktischen Parametern ermöglicht. T2 - Sitzung des NA 092-00-05 GA Gemeinschaftsarbeitsausschuss NAS/NMP: Zerstörende Prüfung von Schweißverbindungen (DVS AG Q 4/Q 4.1) CY - Online meeting DA - 20.03.2025 KW - Schweißnaht KW - Kaltrissbildung KW - Wasserstoff KW - Prüfung KW - ISO 3690 PY - 2025 AN - OPUS4-62759 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Assessment of in-service welding conditions for pressurized hydrogen pipelines via component test N2 - Hydrogen is the energy carrier of tomorrow. This requires a reliable transport infrastructure with the ability to carry large amounts of hydrogen e.g. for steel industry or chemical industry. The conversion of existing natural gas (NG) grids is an essential part of the worldwide hydrogen strategies, in addition to the construction of new pipelines. In this context, the transportation of hydrogen is fundamental different from NG as hydrogen can be absorbed into the pipeline material. Given the well-known effects of hydrogen embrittlement, the compatibility of the materials for the intended pipelines must be investigated (typically low alloy steels in a wide range of strengths and thicknesses). However, pipelines require frequent maintenance, repair or the need for installation for further outlets. In some cases, it is necessary to perform welding on or onto the pipelines while they are still in service, i.e. with active gas flow under high pressure, e.g. such as the well-known “hot tapping”, see Fig. 1a. This in-service welding causes challenges for hydrogen operations in terms of additional hydrogen absorption during welding and the material compatibility. The challenge can be roughly divided into the possible austenitization of the inner pipe material exposed to hydrogen, which can lead to sufficient hydrogen absorption, and the welding itself, which causes an increased temperature range. Both lead to a significant increase in hydrogen solubility and diffusivity of the respective materials compared to room temperature. In this context, knowledge about hot tapping on hydrogen pipelines is scarce due to the lack of operating experience. Fundamental experimental investigations are required to investigate the transferability from NG to hydrogen pipeline grids. For this reason, the present study introduces a specially designed mock-up / demonstrator concept for the realistic assessment of the welding processing conditions, see Fig. 1b. The mock-up was designed to enable in-situ temperature measurement during welding as well as ex-post extraction of samples for the quantification of the absorbed hydrogen concentration, see Fig. 1c. For safety measures, the necessary pressurized hydrogen volume was limited by the insertion of a solid cylinder ensuring a 1 cm hydrogen gas layer. Welding experiments on the pressurized mock-ups with the diameters DN50 and DN200 have shown that the austenitization temperature can be reached on the inner surface of the pipeline, especially on thinner-walled pipelines, using current welding practices. This corresponds to an increased hydrogen uptake in the welded area of several ppm T2 - 1st Conference on Hydrogen in Materials Science and Engineering (H2-MSE) CY - Siegburg, Germany DA - 11.02.2025 KW - Hydrogen KW - Pipeline KW - In-service welding KW - Component test PY - 2025 AN - OPUS4-62544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Determination of inner pipe surface temperatures during in-service welding on hydrogen pipelines by means of component-like mock up experiments N2 - Hydrogen is considered as one of the most important energy carriers in the future. The necessary large-scale transport over long distances requires a suitable pipeline infrastructure. Current plannings encompass a dual-way strategy of repurposing existing natural gas (NG) pipelines, supplemented by the construction of new hydrogen pipelines. In some cases, such as necessary grid extensions or installation of bypasses in case of repair work, techniques like “hot tapping” are applied. These techniques include so-called in-service welding on pressurized pipelines and are state-of-the-art for NG grids and oil pipelines. The existing NG pipeline grid consists of a wide range of materials with different strengths, diameters, and wall thicknesses. In this context, the material compatibility is crucial. The main difference between hydrogen and NG is that hydrogen can both penetrate the material and cause hydrogen embrittlement. In that connection, in-service welding encompasses elevated temperatures for a certain time during the typically multi-layer welding process. Locally even austenitization temperature can be reached or surpassed. Austenite has a higher hydrogen solubility at a significantly lower diffusion rate, which could lead to a critical hydrogen accumulation. Especially the inner pipe surface temperature is from utmost interest, as this interface is exposed to the pressurized hydrogen (up to 100 bar). However, direct measurement of the locally occurring temperatures is very challenging. For this reason, a component-like geometry was developed. The geometry consists of a pipeline segment with a metal sheet joined to the pipe segment, representing similar heat dissipation conditions as in the field. In addition, typical welding parameters were applied that are currently used in the NG grid. This allows the welding of realistic multi-layer fillet welds on the outer pipe wall with simultaneous temperature measurement using manifold thermocouples at defined positions: (1) adjacent to the weld seam on the outer pipe surface, (2) on the inner pipe surface and (3) on the welded metal sheet. To ensure realistic conditions, manual shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) was investigated. The effects of different wall thicknesses and welding heat inputs on the temperature distribution and peak temperatures achieved on the inner pipe surface during welding vary depending on the chosen method. Peak temperatures above austenitization temperature up to 1078 °C have been measured on L245 pipes with wall thickness of 3.6 mm. For pipes made from higher strength materials, such as L485, with a wall thickness of 8 mm, peak temperatures between 607 °C and 755 °C were recorded. Temperature and austenitization directly affects hydrogen diffusivity and solubility, showing the importance of the findings. The temperature profile and cooling conditions influence the mechanical properties of the material as well. For this reason, metallurgical investigations are carried out to assess the hardness and microstructure of the welds. Hardening up to 248 HV10 was detected in the heat-affected zone (HAZ) of the top layer, which could lead to a locally increased susceptibility to hydrogen assisted cracking. Meanwhile, the minimum hardness found in the HAZ of the root layer was as low as 144 HV10, indicating a softening. The results of this study provide valuable insights into the suitability of existing materials and geometries for hydrogen transport. Secondly, the data collected will serve as a basis for planned numerical simulations to further improve knowledge and optimize welding processes to ensure the integrity and safety of hydrogen pipelines. T2 - IIW Intermediate Meeting, Com. II-A CY - Trollhättan, Sweden DA - 10.03.2025 KW - Testing KW - In-service welding KW - Hydrogen KW - Pipelines PY - 2025 AN - OPUS4-62690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Influence of various microalloying strategies on the mechanical properties of weld seams in S690QL steel N2 - Microalloying elements such as niobium (Nb) and titanium (Ti) play a crucial role in achieving the desired mechanical properties of quenched and tempered high-strength fine-grained structural steels with a nominal yield strength of ≥ 690 MPa. Current specifications for the chemical composition only define upper limits for these elements, providing manufacturers with some flexibility. However, even minor deviations in alloying concepts can significantly influence the resulting mechanical properties. Consequently, accurately predicting weldability and the integrity of welded joints becomes challenging or even unfeasible due to variations in composition and the associated microstructural changes. Potential adverse effects include the softening of the heat-affected zone (HAZ) or, conversely, localized hardening phenomena. To address these challenges, various microalloying strategies with different Ti and Nb contents are being systematically investigated for the first time using specially designed laboratory-cast alloys. Each alloying approach is based on the commonly used S690QL steel grade while maintaining consistent chemical composition and heat treatment parameters. To evaluate the weldability, three-layer welds were produced using gas metal arc welding (GMAW), and critical microstructural regions, particularly those within the heat-affected zone (HAZ) exhibiting significant softening or hardening, were identified. The influence of the softened HAZ region on failure behavior was assessed through transverse tensile testing. Digital image correlation (DIC) was employed for in situ analysis of local strain distributions across different HAZ regions. In addition, Charpy tests were carried out on BM, WM and HAZ to determine the Charpy impact toughness. This was supported by metallographic analyses and thermodynamic simulation using ThermoCalc. T2 - IIW Intermediate Meeting, Com. II-A CY - Trollhättan, Sweden DA - 10.03.2025 KW - Welding KW - Microalloy elements KW - High strength steels KW - Mechanical properties PY - 2025 AN - OPUS4-62691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Masoud Nia, Niloufar A1 - Nietzke, Jonathen A1 - Kannengiesser, Thomas T1 - Ti and Nb microalloying of HSLA steels and its effect on hydrogen diffusion and trapping N2 - Fine-grain, high-strength, low-alloy (HSLA) structural steels with yield strengths > 600 MPa are now the state of the art in construction applications such as mobile cranes and civil engineering. HSLA grades derive their strength from a combination of specific heat treatment and the underlying chemical composition. In this context, Ti or Nb are essential to obtain a fine-grained microstructure as well as the necessary carbides or nitrides for precipitation strengthening. In this context, the specific effect of Ti or Nb-rich compounds on hydrogen trapping and diffusion is well known for special laboratory cast alloys, but unknown for realistic steel compositions. For this reason, a series of S690Q-based alloys were synthesized, close to a real steel composition, but with well controlled Ti or Nb additions in different amounts. Specimens were obtained from these alloys by electrochemical discharge machining (EDM). The specimens were tested using the well-established electrochemical permeation technique. From the experimental results, the hydrogen diffusion coefficients and the analytical subsurface hydrogen concentration were calculated. In addition, the hydrogen trapping behavior at elevated temperatures was interpreted by thermal desorption analysis (TDA) using different heating rates of hydrogen charged samples. The results showed that in contrast to metallurgically "pure" laboratory cast alloys, realistic chemical compositions were similar in their hydrogen trapping behavior, despite some small differences. All investigated steel grades exhibited shallow and reversible hydrogen trapping, regardless of their chemical composition. Of course, the experiments only allowed the calculation of effective diffusion coefficients and trapping energies, which represent an average of the entire microstructure. Nevertheless, HSLA steels are typically joined by arc welding, which includes the risk of delayed hydrogen assisted cracking. From the point of view of welding practice, however, a more or less identical hydrogen diffusion behavior means that no special "metallurgically specific", justifiable measures need to be considered, despite the well-established processes such as "soaking" or dehydrogenation heat treatment. T2 - MPAC 2025 CY - Stuttgart, Germany DA - 06.10.2025 KW - HACC KW - Hydrogen KW - HSLA PY - 2025 AN - OPUS4-64337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Kadoke, Daniel A1 - Kruse, Julius T1 - Effect of Ti microalloying on the local strain behavior of cross-weld tensile samples determined by digital image correlation N2 - High-strength low-alloyed (HSLA) steels with yield strength / proof stress ≥ 600 MPa are the basis of modern light-weight steel constructions. Indeed, the economic and ecological benefits strongly depend on their processability in terms of welding. In this context, the use of highly productive welding processes and suitable welding consumables is of vital interest and requires a fundamental understanding of the microstructural changes in the HSLA steel and especially the heat-affected zone (HAZ) of the welded joint. Microalloying elements, such as Ti or Nb, are essential to achieve the desired mechanical properties. To analyse the weldability, three-layer welds were performed using gas metal arc welding (GMAW) and critical microstructures, such as areas of the HAZ that exhibit significant softening or hardening, were identified. The effect of the softened HAZ region on failure was evaluated using cross-weld tensile specimens. Digital image correlation (DIC) was used for in-situ monitoring of the development and accumulation of the local strains in different HAZ regions during tensile testing. Using a specially designed mirror system, the local strains of the microstructure zones on the top and bottom of the weld were recorded simultaneously. In addition, the analysis of the local deformation helps to understand the effects of the softened HAZ on the global strain, the reduction in area, the fracture position, and the overall fracture behavior. KW - High-strength structural steel KW - Microalloying influences KW - HAZ-softening KW - Digital Image Correlation KW - Constraint effect KW - Thermodynamic simulation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643558 DO - https://doi.org/10.1007/s40194-025-02185-1 SP - 1 EP - 17 PB - Springer Nature AN - OPUS4-64355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - A decarbonized future requires pipelines for CO2? A brief overview on perspectives and challenges N2 - Despite the use of hydrogen, for example, in various industrial production processes, CO2 emissions are still unavoidable in the medium term. For example, cement, lime and glass production or waste recycling (waste-to-energy plants) will continue to emit CO2 due to the processing involved chemical reactions. Conversely, the chemical industry with its value chains needs CO2 / carbon as a primary raw material for all compounds that fall within the organic chemistry. In this connection, carbon capture utilization (CCU) will play a key role here. In addition to “natural” methods (via reforestation and the dilution of moors), carbon capture storage (CSS) is already playing a major role, for example by injecting it into old natural gas underground caverns. The resulting quantities of CO2 have to be transported on a large scale and similar to hydrogen pipelines, there are concrete plans for CO2 pipeline networks. For this reason, this presentation provides an introduction to the topic and briefly outlines the associated challenges. On the one hand, these lie in the qualification (testing and construction) and especially in the operation of the pipelines with regard to strict monitoring of the gas quality (e.g. carbonic acid corrosion) and in the avoidance of critical service conditions (sudden pressure fluctuations), which can lead to localized condensation. Among other things, this can lead to the lowering of the typically welded low-alloyed steel pipes below the ductile brittle transition temperature (DBTT) and thus can have an impact on pipeline integrity. T2 - 49th MPA Conference CY - Stuttgart, Germany DA - 06.10.2025 KW - CO2 KW - Pipeline KW - Welding KW - Testing PY - 2025 AN - OPUS4-64316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component test for simulation of in-service welding on hydrogen pipelines N2 - Hydrogen is set as the energy carrier of tomorrow and most countries will achieve large-scale hydrogen transport through the conversion of the natural gas (NG) grid and the construction of new pipelines. The interaction between hydrogen and the pipeline materials differs fundamentally from that of NG, as hydrogen is readily absorbed into the material. Considering the possible hydrogen embrittlement (HE), the compatibility of the pipeline materials (low-alloyed steels with a wide strength/thickness range) must be investigated. However, pipelines require intervention for maintenance, repair, or grid expansion with welding on/onto the pipelines while in service, i.e. the well-known "hot tapping" and "stoppling". The challenges compared to NG can be broadly divided into the possible austenitization of the inner pipe material exposed to hydrogen and the welding itself. Both result in a significant increase in hydrogen solubility and could potentially pose challenges in terms of HE. Emphasis is placed on the word "could" because knowledge of "hot tapping" on hydrogen pipelines is scarce due a lack of service experience. To this end, this study proposes a concept for a component-like demonstrator with the objectives: (1) safe feasibility of "hot tapping" on pressurized model hydrogen pipeline sections, (2) facilitate ex-post sample extraction for the purpose of quantifying the absorbed hydrogen concentrations, and (3) ensure in-situ temperature measurement during welding to monitor the pipeline surface temperature. For safety reasons in the event of an unintentional "burn-through", a solid cylinder was inserted in the demonstrator to restrict the hydrogen gas volume to a small, pressurized layer. Reference pipeline surface temperature measurements were ensured on comparable, unpressurized geometries. The investigated range of welding conditions was investigated for representative material/thickness combinations (DN60 to DN300), suggesting the feasibility of the demonstrator for the determination of reliable in-service welding conditions for both installed and new pipelines for hydrogen service. T2 - 49th MPA Conference CY - Stuttgart, Germany DA - 06.10.2025 KW - Hydrogen KW - Pipeline KW - In-service welding KW - Component test PY - 2025 AN - OPUS4-64317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Ti and Nb influence on the HAZ microstructures of weld-simulated high-strength structural steel S690QL N2 - High-strength low-alloyed (HSLA) steels with yield strength / proof stress ≥ 600 MPa are the basis of modern light-weight steel constructions. Indeed, the economic and ecological benefits strongly depend on their processability in terms of welding. In this context, the use of highly productive welding processes, suitable welding consumables is of vital interest and requires a fundamental understanding of the microstructural changes in the HSLA steel and especially the heat-affected zone (HAZ) of the welded joint. Microalloying elements, such as Ti or Nb, are essential to achieve the desired mechanical properties. In this context, the underlying standards (such as EN 10025-6) only specify maximum values, resulting in different manufacturer customized microalloy concepts. Furthermore, even small deviations can have a drastic effect expressed by an excessive hardening or softening despite identical welding conditions and filler metal. The reason is the different thermal stability of the Ti and Nb-related precipitates (typically carbides or carbon nitrides). As a result, it is difficult (or even impossible) to adequately predict the weldability. Against this background, different microalloying routes with varying Ti and Nb contents for a S690QL reference grade were systematically investigated in terms of lab-cast alloys close to realistic chemical compositions. To investigate the influence of the welding heat input on the HAZ microstructure formation, physical simulations were carried with specified peak temperatures and cooling times (by a dilatometry). The focus was the identification of the occurring phase transformations during cooling and the final HAZ microstructure. In this context, a double welding cycle was simulated to further identify the behavior of the so-called intercritical HAZ (where softening is likely to occur) in case of the common multi-layer welding for thick plates. The results showed: (1) microalloying has significant influence on the formation of the individual HAZ dependent on (2) the thermal stability of the Ti or Nb-precipitates and (3) synergistic effects of further elements such as Mo and their effect on phase transformations in the HAZ. The results represent a microstructure-based validation of welding processing of such HSLA-steels e.g. in terms of preferred microalloy and weld heat input combinations. T2 - 49th MPA Conference CY - Stuttgart, Germany DA - 06.10.2025 KW - High-strength steel KW - Microalloy elements KW - Welding KW - Weld simulation KW - Microstructure PY - 2025 AN - OPUS4-64319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Mechanische Eigenschaften der Längschweißnaht einer X65-Pipeline in Druckwasserstoffatmosphäre N2 - Im folgenden Beitrag werden die Ergebnisse der mechanischen Eigenschaften unter 200 bar Druckwasserstoff des Werkstoffes 316L (1.4404) vorgestellt. Dazu wurden Hohlzugproben aus konventionellem, kaltgezogenem Material herausgearbeitet und per SLM-PBF additiv gefertigten Hohlzugproben gegenübergestellt. Die Proben wurden da-bei unter Druckwasserstoff einer SSRT-Prüfung mit einer Dehnrate von 1E-5/s unterzogen. Zusätzlich zum Werkstoffzustand wurde der Einfluss des Oberflächenzustandes charakterisiert: (1) additiv gefertigten Proben mit endkonturnaher Form „as-printed“ oh-ne zusätzliche Bohrung, (2) Bohren und (3) zusätzliches Honen. Die gemessene Degradation der mechanischen Eigenschaften unter Wasserstoff hing dabei in erster Linie von der Oberfläche ab und damit indirekt vom Werkstoffzustand „as-printed“ oder kaltgezogen ab. Während die Proben mit gebohrter und/oder gehonter Oberfläche eine RRA (Relative Reduction of Area) 78 % aufwiesen, zeigten die AM-Proben eine deutlich höhere RRA von 90 %. Ein möglicher Grund dafür sind während der Fertigung ausbildende Oxidschichten, die sich durch geringe Mengen an Restsauerstoff während des AM-Prozesses ausbilden. Zur abschließenden Charakterisierung sind weitere Untersuchungen erforderlich, insbesondere für ein größeres Parameterfeld an Prüftemperaturen (Oxideinwirkung) und Dehnraten (mechanische Beständigkeit der Oxidschicht ähnlich den Einflüssen auf „klassische“ Spannungsrisskorrosion). T2 - DGM Arbeitskreis Wasserstoff CY - Neu-Isenburg, Germany DA - 26.05.2025 KW - Pipeline KW - Wasserstoff KW - Hohlzugprobe PY - 2025 AN - OPUS4-63236 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Additive gefertigte 316L-Hohlzugproben unter Druckwasserstoff - Einfluss der Oberfläche und des Werkstoffzustandes N2 - Im folgenden Beitrag werden die Ergebnisse der mechanischen Eigenschaften unter 200 bar Druckwasserstoff des Werkstoffes 316L (1.4404) vorgestellt. Dazu wurden Hohlzugproben aus konventionellem, kaltgezogenem Material herausgearbeitet und per SLM-PBF additiv gefertigten Hohlzugproben gegenübergestellt. Die Proben wurden da-bei unter Druckwasserstoff einer SSRT-Prüfung mit einer Dehnrate von 1E-5/s unterzogen. Zusätzlich zum Werkstoffzustand wurde der Einfluss des Oberflächenzustandes charakterisiert: (1) additiv gefertigten Proben mit endkonturnaher Form „as-printed“ oh-ne zusätzliche Bohrung, (2) Bohren und (3) zusätzliches Honen. Die gemessene Degra-dation der mechanischen Eigenschaften unter Wasserstoff hing dabei in erster Linie von der Oberfläche ab und damit indirekt vom Werkstoffzustand „as-printed“ oder kaltgezogen ab. Während die Proben mit gebohrter und/oder gehonter Oberfläche eine RRA (Relative Reduction of Area) 78 % aufwiesen, zeigten die AM-Proben eine deutlich höhere RRA von 90 %. Ein möglicher Grund dafür sind während der Fertigung ausbildende Oxidschichten, die sich durch geringe Mengen an Restsauerstoff während des AM-Prozesses ausbilden. Zur abschließenden Charakterisierung sind weitere Untersuchungen erforderlich, insbesondere für ein größeres Parameterfeld an Prüftemperaturen (Oxideinwirkung) und Dehnraten (mechanische Beständigkeit der Oxidschicht ähnlich den Einflüssen auf „klassische“ Spannungsrisskorrosion). T2 - DGM Arbeitskreis Wasserstoff CY - Neu-Isenburg, Germany DA - 26.05.2025 KW - Wasserstoff KW - Additive Fertigung KW - Hohlzugprobe KW - Austentitischer Stahl PY - 2025 AN - OPUS4-63239 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Grimault de Freitas, Tomás A1 - Rhode, Michael A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - Investigation of resistance to gaseous hydrogen of a longitudinal weld seam in a X65 pipeline using the hollow specimen technique N2 - The constantly increasing demand for renewable energy sources leads to the necessity of transporting large amounts of hydrogen. Since pipelines enable a cost-effective way for the distribution of gaseous hydrogen, the interaction of hydrogen and the pipeline materials must be carefully investigated as hydrogen can cause a degradation of the mechanical properties under certain conditions. Especially welds, which are assumed to be more susceptible to the degradation enhanced by hydrogen, are of great interest. The aim of this study is to investigate the effect of gaseous hydrogen on the mechanical properties of an X65 pipeline, and the longitudinal submerged arc welding (SAW) welded joint. The tests are conducted using the hollow specimen technique on two types of specimens: one extracted from the base material (BM) and the other extracted as a cross-weld (CW) specimen consisting of BM and weld seam. The specimens are charged in situ under a pressure of 60 bar and tested using slow strain rate (SSR) tensile tests with a nominal strain rate of 10−5 s−1. The properties obtained of specimens tested in hydrogen atmosphere are compared to the properties of comparable specimen in inert argon atmosphere as a reference. The performed tests showed a decrease of the reduction of area (RA) from 72% in inert atmosphere to 52% in hydrogen atmosphere for the CW specimen and a decrease from 73% in inert atmosphere to 51% for the BM. Metallographic analyses showed the crack initiation between fine-grained heat-affected zone (FGHAZ) and BM for the specimens tested in hydrogen atmosphere as well as for the reference specimens. This leads to the conclusion that the location of the crack initiation does not change due to the presence of gaseous hydrogen. KW - Hydrogen KW - Hollow specimen technique KW - Pipeline KW - SSRT KW - Hydrogen embrittlement KW - Cross-weld specimen PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624658 DO - https://doi.org/10.1007/s40194-025-01953-3 SN - 0043-2288 SN - 1878-6669 VL - 69 IS - 3 SP - 861 EP - 870 PB - Springer CY - Berlin AN - OPUS4-62465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Repair welding of pressurized in-service hydrogen pipelines - A review on current challenges and strategies N2 - As energy carrier of the future, green hydrogen can make a decisive contribution to a sustainable energy supply. Particularly important is the decarbonization of heavy industry. Therefore, a reliable supply of hydrogen must be guaranteed. A hydrogen pipeline grid can achieve this purpose. In Europe concrete plans for a hydrogen pipeline grid already exist, as the so called “European Hydrogen backbone”. As building a completely new pipeline grid is economically not justifiable, a dual-way strategy of repurposing natural gas (NG) pipelines and newly built pipelines is intended. Long distance pipeline grids require regular maintenance and repairs. For natural gas (NG) pipelines in-service welding is state of the art. Concepts such as hot-tapping (drilling into pressurized pipelines) and “stoppling” (sealing off pipeline sections after installing bypasses or pressure relieves) allow the repair of damaged pipeline sections or the installation of new branches without shutting the pipeline down, which in most cases isn’t possible from an economic standpoint. The EIGA 121/14 guideline already pointed out in 2014 that “a hydrogen hot-tap shall not be considered a routine procedure”. This shows that the determination of the transferability of these repair concepts to hydrogen pipelines is of utmost importance. Due to the degrading effects of hydrogen on mechanical proper-ties, commonly referred to as “hydrogen embrittlement” it is necessary to understand and investigate the occurring effects. In the special case of repair welding on in-service hydrogen pipelines an increased hydro-gen uptake due to a large heat input and microstructural changes in the material needs to be considered. Therefore, material degradation must be investigated to determine whether modifications of repair procedures are necessary to ensure a reliable and safe hydrogen transportation via pipelines. For this reason, this paper gives an overview on existing weld repair concepts and its risks and limitations in terms of hydrogen absorption and possible embrittlement effects when transferred to hydrogen pipelines. The complexity lies in a large variety of materials (low alloyed steels), pipeline diameters and corresponding welded joints. The material compatibility of materials in used (repurposed NG-pipelines) and new condition must be investigated. Particularly for repurposed/used pipelines the effect of a pre-matured/corroded inner surface and sometimes insufficient documentation of the material “history” needs to be considered. An overview on ongoing and completed R&D-projects with respect to repair concepts for hydrogen pipelines and hydrogen effects on pipeline materials is given. The focus hereby lies on possible methods of material testing and modeling. Its current difficulties, limits and possible solution will be discussed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Repair welding KW - Pipelines KW - In-service PY - 2024 AN - OPUS4-59674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Combined effect of heating rate and restraint condition on stress relief cracking susceptibility during PWHT of thick-walled Cr-Mo-V steel submerged arc welded joints N2 - Contemporary steels creep-resistant steels like the 13CrMoV9-10 are used as thick plates e.g., for applications in hydrocrackers. The large plate thickness requires high efficiency welding processes like submerged arc welding (SAW) and a mandatory post weld heat treatment (PWHT). The PWHT-parameters stem from a combination of empirical knowledge and traditional experiments on free shrinking (FS) welds. In that connection, the formation of so-called stress-relief cracking (SRC) must be anticipated. The SRC susceptibility of a welded component is a complex combination and interaction of com-ponent specific, thermal, and metallurgical factors. Many of which have to date not been conclusively researched. For example, it is well known that SRCs develop during PWHT due to formation and growth of carbides on prior austenite grain boundaries, resulting in a significant hardness increase (secondary hardening) and toughness decrease. This leads to a high SRC susceptibility of the coarse grain heat-affected zone (CGHAZ) of the last weld bead during PWHT. This is intensified in case of high residual stresses from the component-specific, structurally induced stiffness. In combination with multi-layer welding this leads to a multiaxial stress distribution. Nonetheless, the combined effect of PWHT and high-residual stresses on the SRC formation is merely unknown. For that reason, this study presents the effect of different heating rates in conjunction with a certain component stiffness. For that reason, SAW joints of 13CrMoV9-10 steel were investigated under FS and defined external restraint condition. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Stress relief cracking KW - Welding KW - Post weld heat treatment KW - Submerged arc welding KW - Cr-Mo-V steel KW - Creep-resisting steel PY - 2024 AN - OPUS4-59673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Call for interested people to contribute to series of comprehensive papers on welding and joining of components for sustainable energy systems N2 - Joining and welding technologies are of high importance for the manufacturing of components and parts used in sustainable energy generation, conversion, and transport. In that connection, offshore and on-shore installed wind turbines are of high interest for the generation of electrical energy as well as photo-voltaic systems (solar cells). The electricity can be either directly transported or conversed via power-to-gas e.g., to hydrogen. In that scope, electrolyzer up to MW-range are of interest as well as the conver-sion back to electricity via fuel cells. In addition, hydrogen is a key element of the decarburization of in-dustries as well as the mobility sector encompassing sea, air and land transportation driven by hydrogen or its derivates. Well-known examples cover the direct reduction of iron ore to replace the conventional blast furnace process up to gas turbines or fuel cells for home-end use. All mentioned technologies re-quire reliable components, which are to a high extend dependent on joining and especially welding pro-cessing of materials. Especially, the (petro-) chemical industry has many years of experience with both materials used in hydrogen applications. The challenge is e.g., the transition to mass production of sys-tem components of electrolyzers/fuel cells and for distribution grids. At this point, the scalability of cur-rently applied joining processes often limits the economic efficiency, whereas especially laser welding or additive manufacturing will be of high interest. In that connection, it is very important to provide answers by joint research of universities, institutes, and industrial companies. Very often, solutions are already available and “just” have to be investigated and adapted for the new application, like repair welding of NG pipelines. For that reason, we want to set up a series of comprehensive papers with the aforementioned title. The idea is to get an in-depth but manageable overview of the importance of joining technologies in sustaina-ble energy generation, conversion, and transport encompassing current processes, limitations, and fur-ther perspectives. In that connection, the additive manufacturing is gaining more and more attention. If applicable, current challenges in the adaption or creation of new standards/regulations shall be addressed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Welding KW - Comprehensive study KW - Component manufatcturing KW - Additive manufacturing PY - 2024 AN - OPUS4-59676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Mente, Tobias A1 - Michael, Thomas T1 - Local mechanical properties of dissimilar metal TIG welded joints of CoCrFeMnNi high entropy alloy and AISI 304 austenitic steel N2 - Multiple principal element alloys encompass the well-known high entropy alloys (HEA). The alloy system represents a new class of materials consisting of at least three alloying elements, each containing 5 to 35 at.%. Thus, this alloying concept differs fundamentally from conventional materials such as steel or nickel alloys. For this purpose, the alloying elements are specifically selected, the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. In particular, conflicting goals, such as the trade-off between strength and ductility in conventional steels, are overcome. However, in the last 20 years, the focus has been on material synthesis. With the increase in available material quantities, the focus is now on processing issues such as joining and welding processes. The weldability of HEAs has received very little attention so far. The experience with dissimilar metal welds is completely lacking but is essential for the application of these materials in combination with conventional materials. The present study presents comprehensive experimental results on the weldability of an equimolar CoCrFeMnNi-HEA in cold-rolled and heat-treated condition, which was joined by tungsten inert gas welding to an austenitic steel AISI 304. The mechanical properties of the dissimilar metal welds were characterized by cross-weld tensile samples, whereas the local deformation in the weld of the different welding zones was measured by digital image correlation. In accordance with the respective initial HEA condition (cold-rolled vs. heat-treated), the local strain behavior was divergent and influenced the global mechanical properties of both DMW types. Nonetheless, the experiments provided proof in principle of the weldability for dissimilar joints of the CoCrFeMnNi-HEA welded to conventional materials like austenitic stainless steels ensuring a corresponding capability for mechanical loading. This allows further considerations on the application of these innovative materials. KW - TIG welding KW - High-entropy alloys KW - Mechanical properties KW - Dissimilar metal weld PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595775 DO - https://doi.org/10.1007/s40194-024-01718-4 SN - 0043-2288 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-59577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Combined effect of heating rate and restraint condition on stress relief cracking susceptibility during PWHT of thick walled Cr Mo V steel submerged arc welded joints N2 - Contemporary steels creep-resistant steels like the 13CrMoV9-10 are used as thick plates e.g., for applications in hydrocrackers. The large plate thickness requires high efficiency welding processes like submerged arc welding (SAW) and a mandatory post weld heat treatment (PWHT). The PWHT-parameters stem from a combination of empirical knowledge and traditional experiments on free shrinking (FS) welds. In that connection, the formation of so-called stress-relief cracking (SRC) must be anticipated. The SRC susceptibility of a welded component is a complex combination and interaction of com-ponent specific, thermal, and metallurgical factors. Many of which have to date not been conclusively researched. For example, it is well known that SRCs develop during PWHT due to formation and growth of carbides on prior austenite grain boundaries, resulting in a significant hardness increase (secondary hardening) and toughness decrease. This leads to a high SRC susceptibility of the coarse grain heat-affected zone (CGHAZ) of the last weld bead during PWHT. This is intensified in case of high residual stresses from the component-specific, structurally induced stiffness. In combination with multi-layer welding this leads to a multiaxial stress distribution. Nonetheless, the combined effect of PWHT and high-residual stresses on the SRC formation is merely unknown. For that reason, this study presents the effect of different heating rates in conjunction with a certain component stiffness. For that reason, SAW joints of 13CrMoV9-10 steel were investigated under FS and defined external restraint condition. T2 - 77th IIW Annual Assembly and International Conference, Meeting of Commission II-A CY - Ixia, Rhodes, Greece DA - 07.07.2024 KW - Stress relief cracking KW - Submerged arc welding KW - Post weld heat treatment KW - Cr-Mo-V steel PY - 2024 AN - OPUS4-60675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Quantitative Bestimmung von Wasserstoff durch Heißgasextraktion: Erfahrungen und Grenzen N2 - Die Trägergas-Heißextraktion (TGHE) mit Warmauslagerung (d.h. ohne Schmelzen der Proben) ist eine häufig angewandte Technik zur Bestimmung von Wasserstoff, u.a. für Schweißverbindungen aber auch allgemein für Metalle geeignet. Die TGHE basiert auf der beschleunigten Wasserstoffausgasung aufgrund der thermischen Aktivierung bei erhöhten Temperaturen. Die Norm ISO 3690 schlägt hierzu verschiedene Probengeometrien sowie die erforderliche Mindestextraktionszeit in Abhängigkeit der Temperatur vor. Die vorliegende Präsentation fasst die Ergebnisse und Erfahrungen zahlreicher Testläufe an der BAM der letzten 15 Jahre mit unterschiedlichen Probentemperaturen, Geometrien, etc. zusammen, die die Wasserstoffbestimmung beeinflussen können. Dabei handelt es sich insbesondere um die Bewertung des Absorptionskoeffizienten für Infrarotstrahlung der Probenoberfläche, die begrenzte Empfindlichkeit von WLD im Vergleich zum MS, die Temperaturmessung, u.v.m. Zusammenfassend lässt sich sagen, dass die Temperatur die treibende Kraft der TGHE ist. Es werden Vorschläge zur Verbesserung der Zuverlässigkeit der Wasserstoffbestimmung gemacht, die von der Stabilität des Wasserstoffsignals während der Extraktion und der Auswertung der aufgezeichneten Daten abhängt. Im Allgemeinen ist eine unabhängige Temperaturmessung mit Dummy-Proben für die weitere Datenanalyse nützlich, insbesondere wenn diese Daten für die Berechnung der Einfangkinetik verwendet werden. T2 - Herbstsitzung des DGM Arbeitskreises "Materialprüfung unter Wasserstoff" CY - Dortmund, Germany DA - 19.11.2024 KW - Wasserstoff KW - Trägergasheißextraktion KW - Messung KW - Massenspektrometrie KW - Schweißen PY - 2024 AN - OPUS4-61721 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of microalloying on precipitation behavior and notch impact toughness of welded high‑strength structural steels N2 - Microalloying elements such as Nb and Ti are essential to increase the strength of quenched and tempered high-strength low alloy (HSLA) structural steels with nominal yield strength ≥ 690 MPa and their welded joints. Standards such as EN 10025–6 only specify limits or ranges for chemical composition, which leads to variations in specific compositions between steel manufacturers. These standards do not address the mechanical properties of the material, and even small variations in alloy content can significantly affect these properties. This makes it difficult to predict the weldability and integrity of welded joints, with potential problems such as softening or excessive hardening of the heat-affected zone (HAZ). To understand these metallurgical effects, previous studies have investigated different microalloying routes with varying Ti and Nb contents using test alloys. The high-strength quenched and tempered fine-grained structural steel S690QL is the basic grade regarding chemical composition and heat treatment. To evaluate weldability, three-layer welds were made using high-performance MAG welding. HAZ formation was investigated, and critical microstructural areas were identified, focusing on phase transformations during cooling and metallurgical precipitation behavior. Isothermal thermodynamic calculations for different precipitations were also carried out. Mechanical properties, especially Charpy notch impact toughness, were evaluated to understand the influence of different microalloys on the microstructure of the HAZ and mechanical properties. KW - High-strength structural steel KW - Gas metal arc welding KW - HAZ-softening KW - Notch impact toughness KW - Microalloying influences KW - Thermodynamic simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608548 DO - https://doi.org/10.1007/s40194-024-01827-0 SN - 0043-2288 SP - 1 EP - 13 PB - Springer AN - OPUS4-60854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Evaluation of local strain behavior of cross-weld tensile specimens of micro-alloyed high-strength steels by digital image correlation N2 - Microalloying elements such as Nb and Ti play a decisive function in achieving the desired mechanical strength of quenched and tempered, high-strength fine-grain structural steels with a nominal yield strength ≥ 690 MPa. The current specifications for the chemical composition only provide manufacturers with upper limits. However, even minor deviations in the alloy concept can have a significant impact on the mechanical properties. Consequently, accurate prediction of weldability and the integrity of welded joints becomes difficult or even impossible due to differences in composition and the resulting microstructures. Undesirable consequences include a possible softening of the heat-affected zone (HAZ) or, conversely, hardening effects. In view of these challenges, various microalloying strategies with different Ti and Nb contents are being systematically investigated for the first time using specially developed laboratory casting alloys. Each alloying route is based on the common S690QL, maintaining both the chemical composition and the heat treatment parameters. To analyse the weldability, three-layer welds were performed using gas metal arc welding (GMAW) and critical microstructures, such as areas of the heat-affected zone (HAZ) that exhibit significant softening or hardening, were identified. The effect of the softened HAZ region on failure was evaluated using transverse tensile specimens. Digital image correlation (DIC) is used to image changes in local strains in different HAZ regions in situ. Using a specially developed mirror system, the local strains of the microstructure zones on the top and bottom of the weld are recorded simultaneously. This makes it possible to analyse how the weld seam geometry (e.g., V-seam) influences the strain gradients. In addition, the analysis of the local deformation helps to understand the effects of the softened HAZ on the global strain, the fracture constriction, the fracture position, and the overall fracture behavior. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Welding KW - High-strength steel KW - Alloy concept KW - Cross-weld tensile sample KW - Mechanical properties PY - 2024 AN - OPUS4-59675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Welding of in service hydrogen pipelines for repair and maintenance purposes Concepts and Challenges N2 - Hydrogen will make a decisive contribution to a sustainable large-scale energy supply, the transport of which will be based on long-distance pipeline grids. Previous material compatibility studies have shown that the currently used low-alloy pipe steels are generally suitable for hydrogen pipelines. However, this cannot be directly transferred to the case of repair welding. For technical and economic reasons, welding work on hydrogen pipelines in service is usually carried out during operation under continuous pressure and gas flow. In this context, concepts such as hot tapping and stoppling are well established in natural gas (NG) grids and crude oil transportation. In hot tapping, a pressurized pipeline is drilled by flanging a sealed, pressure-tight system consisting of a shut-off valve and drilling equipment. For this purpose, sleeves (made of preformed cylindrical half-shells) must be welded by longitudinal seams and then welded to the product-carrying pipeline by circumferential girth welds. Preheat temperatures of approximately 100 °C must be maintained for most manual metal arc (MMA) / shielded metal arc welding (SMAW) and 250 °C for the interpass temperature in multi-pass welding. This is particularly important for thin-walled pipelines because the austenitizing temperature is exceeded on the inside of the pipeline when the girth welds are welded. As a result, significantly higher hydrogen absorption in the pipeline steel is expected, with possible degradation of mechanical properties or cracking. T2 - MSE 2024: International Materials Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - Hydrogen KW - Repair welding KW - Pipelines KW - In-service PY - 2024 AN - OPUS4-61155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Joining technology for the new hydrogen economy: Current need and future perspectives N2 - This presentation gives an overview on the importance of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the three technological fields: hydrogen storage, transport and use (in terms of the emerging field of additive manufacturing). Finally, some remarks are given for necessary changes in the standardization. T2 - Laser Colloquium Hydrogen 2024 CY - Aachen, Germany DA - 10.09.2024 KW - Hydrogen technologies KW - Joining KW - Welding KW - Challenges KW - Standardization PY - 2024 AN - OPUS4-61012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - "H2-SuD" Einfluss des Schweißens auf die Wasserstoffaufnahme und Degradation im Betrieb befindlicher H2-Ferngasleitungen, Statusbericht – März 2024 N2 - Die Umstellung der Wirtschaft auf wasserstoffbasierte Energieversorgung soll in Deutschland vor allem auf Basis der Umstellung des bestehenden Erdgasnetzes erfolgen. ­Dabei sollen ca. 90 % dieser Fernleitungsnetze auf dem bestehenden Erdgasnetz basieren. Die Beimischung von Wasserstoff zum Erdgas als auch der reine Wasserstofftransport werfen jedoch die Frage auf, ob und wie kompatibel die eingesetzten Materialien sind. Die Reparatur- und Erweiterungsfähigkeit von Erdgas-Bestandspipelines ist zu klären, wenn diese auf Wasserstoff umgestellt werden. Denn gerade Gashochdruckleitungen müssen regelmäßig gewartet und erweitert werden, um einen ordnungsgemäßen Betrieb sicherzustellen. Insbesondere das Schweißen unter Betriebsdruck bzw. an in Betrieb befindlichen Gasleitungen ist eine der wichtigsten Instandhaltungstechnologien, unabhängig von der Zusammensetzung des geförderten Mediums. Es ist daher dringend notwendig, eine geeignete Teststrategie zu erarbeiten, welche die nötigen Vorrausetzungen für sicheres Schweißen an in Betrieb befindlichen Druckwasserstoffleitungen schafft und entsprechende Kriterien für die Praxis liefert. Im Projekt H2-SuD - Einfluss des Schweißens auf die Wasserstoffaufnahme und Degradation im Betrieb befindlicher H2-Ferngasleitungen - soll geklärt werden, ob und wie stark mit einer Eigenschaftsdegradation geschweißter Rohrstähle in Gasnetzen in Folge einer Wasserstoffaufnahme zu rechnen ist. Die Präsentation gibt dazu einen kurzen Überblick über den aktuellen Status des Projektes. Die Förderung erfolgt im Rahmen der DVGW-Innovationsprogammes Wasserstoff (Nr. G 202131). T2 - DVGW - Arbeitsgruppentreffen CY - Berlin, Germany DA - 19.03.2024 KW - Wasserstoff KW - Pipeline KW - Reparaturschweißen KW - Betrieb KW - Hochdruck PY - 2024 AN - OPUS4-59758 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Wasserstoffabhängige mechanische Eigenschaften der Schweißnahtgefüge niedriglegierter Stähle für Ferngasleitungen N2 - Der Vortrag stellt aktuelle Ergebnisse des Fosta-Forschungsprojektes P1668 vor. Ziel ist hier, die Wasserstoffresistenz geschweißter Mikrostrukturen gängiger und neuer Pipeline-Stählen zu untersuchen. Im Fokus stehen hierbei durch physikalische Simulation nachgebildete, schweißnahtähnliche Mikrostrukturen in Form von (1) Wärmeeinflusszonen mit unterschiedlicher Abkühlgeschwindigkeit und (2) angelassene Zonen zur Simulation der typischen Mehrlagenschweißungen. Aus diesen repräsentativen Mikrostrukturen werden Zugproben extrahiert welche elektrochemisch oder mit Druckwasserstoff beladen werden. Aus diesen wird dann eine Datenbasis der spezifischen mechanische Eigenschaften unter Wasserstoff bereitgestellt. Die so entwickelte, praxisorientierte Prüfstrategie ermöglicht die schnelle und zuverlässige Bewertung sowohl in Betrieb befindlicher als auch neuer Rohrleitungswerkstoffe. T2 - Herbstsitzung des DGM Arbeitskreises "Materialprüfung unter Wasserstoff" CY - Dortmund, Germany DA - 19.11.2024 KW - Wasserstoff KW - Pipeline KW - Mechanische Kennwerte KW - Schweißen KW - Prüfung PY - 2024 AN - OPUS4-61750 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Unter Druck gesetzt: Die unterschätzte Bedeutung des In-Service-Schweißen für die Wasserstoffinfrastruktur der Zukunft N2 - Wasserstoff leistet als Energieträger der Zukunft einen entscheidenden Beitrag zur nachhaltigen Energieversorgung. Der Transport wird vorwiegend durch das europäische Ferngasleitungsnetz erfolgen. Bisherige Untersuchungen zeigen, dass bisher verwendete Rohrstähle grundsätzlich für den Wasserstofftransport geeignet sind. Diese Eignung ist nicht direkt auf Reparaturfragestellungen im Betrieb übertragbar, da Schweißungen aus technisch-ökonomischen Gründen oft unter fortwährendem Gasfluss durchgeführt werden. Ein im Erdgasnetz angewandtes Konzept ist das Anbohren druckführender Pipelines („Hot Tapping“). Dazu werden Zylinderhalbschalen zuerst durch Längs- und dann per Rohrrundnähten an die Pipeline geschweißt. Essenziell ist dabei die maßgeschneiderte Wärmeeinbringung, um das „Durchbrennen“ in die Pipeline zu vermeiden. Für zukünftige Wasserstoffpipelines liegt der Fokus u.a. auf dünnwandigen Leitungen. Im Gegensatz zu Erdgas, führen die beim Schweißen erreichten hohen Temperaturen an der Innenseite der Pipeline zu einer zusätzlichen Wasserstoffaufnahme in den Rohrstahl mit möglicher Materialdegradation. Zur praktischen Lösung der Fragestellung, sind internationale Aktivitäten im Gang. Diese umfassen bspw. die Möglichkeiten und Weiterentwicklung von realistischen Prüfkonzepten (u.a. durch maßstäbliche Bauteilversuche). Dazu untersucht die Bundesanstalt für Materialforschung und -prüfung (BAM) in einem DVGW-geförderten Kooperationsprojekt zusammen mit den grossen Gasnetzbetreibern, die Frage der Übertragbarkeit der Schweißkonzepte der Erdgastechnik auf zukünftiger Wasserstoffpipelines. T2 - Herbstsitzung des DGM Arbeitskreises "Materialprüfung unter Wasserstoff" CY - Dortmund, Germany DA - 19.11.2024 KW - Wasserstoff KW - Pipeline KW - Reparaturschweißen KW - Komponententest PY - 2024 AN - OPUS4-61723 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengießer, Thomas A1 - Schaupp, Thomas A1 - Zavdoveev, Anatoly T1 - Challenges for testing hydrogen-assisted cold cracking in weld seams of high-strength steel grades N2 - Hydrogen can cause weld cold cracking even days after fabrication. In this respect, higher strength steels present a challenge to established cold crack testing. In general, the tolerable hydrogen concentration for crack prevention decreases with increasing material strength. In addition, advanced welding processes require changes in weld geometry and heat input. This directly influences the formation of crack-critical microstructures, e.g. in hardened areas of the heat-affected zone. The limits of use and application of modern cold cracking tests are evaluated by (1) the externally loaded Implant-test and (2) the self-restraint Tekken-test. In particular, external mechanical stresses, which cause additional mechanical loads on the components during welding, must be considered due to the component-specific stiffness of high-strength steels. Accompanying test methods for determining hydrogen concentration and diffusion in welds are presented, such as carrier gas hot extraction for determining hydrogen concentration (ISO 3690) or temperature-dependent diffusion coefficients. These values are of great importance for a holistic approach to the evaluation of the cold cracking sensitivity of high strength steels. KW - Hydrogen KW - Welding KW - Cold cracking test KW - High-strength steel PY - 2024 DO - https://doi.org/10.37434/tpwj2024.08.01 SN - 0957-798X VL - 2024 IS - 8 SP - 3 EP - 9 PB - International Association "Welding" CY - Kyiv, Ukraine AN - OPUS4-60946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaiser, Sebastian A1 - Erxleben, Kjell A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Repair Welding of In-Service Hydrogen Pipelines - Concepts and Challenges N2 - Hydrogen is set as the energy carrier of tomorrow for a more sustainable fossil fuel free future. As this necessitates a reliable transport infrastructure, repurposing of the existing natural gas grid is planned. With regards to the well-known effect of hydrogen embrittlement, the compatibility of utilized materials must be investigated. First comprehensive studies on pipeline material hydrogen compatibility indicate that these materials can be applied to a certain extent. Nonetheless, the material compatibility is currently of high interest and focus of numerous research projects worldwide. However, pipelines require frequent maintenance and repair work. As part of these, in some cases it is necessary to do weldments onto pipelines while they are pressurized. This in-service welding introduces additional challenges for the material compatibility. Due to the resulting high temperatures, the metallurgical changes in the material and of course the presence of high-pressure hydrogen in the pipeline, additional investigations need to be conducted to ensure that no critical material degradation because of increased hydrogen absorption occurs and an overall material compatibility is given. For this reason, the present paper introduces in-service welding on pipelines. An overview of current research projects that deal with the application of in-service welding specifically on hydrogen pipelines and the emerging problems when applying these techniques on hydrogen pipelines is given. Methods of material testing, their limits and possible solutions are presented and discussed. T2 - 2024 15th International Pipeline Conference CY - Calgary, Alberta, Canada DA - 23.09.2024 KW - Hydrogen KW - Pipeline KW - Welding KW - In-Service PY - 2024 SN - 978-0-7918-8856-8 DO - https://doi.org/10.1115/IPC2024-133052 SP - 1 EP - 6 PB - The American Society of Mechanical Engineers (ASME) CY - New York AN - OPUS4-62262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Kadoke, Daniel A1 - Kruse, Julius T1 - Local strain behaviour in cross weld tensile specimens of microalloyed high strength steels using digital image correlation N2 - This study specifically examines the role of the microalloying element titanium (Ti) in achieving the desired mechanical properties of quenched and tempered high-strength fine-grain structural steels, with a nominal yield strength of ≥ 690 MPa. Current specifications limit chemical composition only by defining upper thresholds, but even minor variations in Ti content can substantially alter mechanical properties. Consequently, accurate prediction of weldability and welded joint integrity becomes challenging, as variations in Ti lead to distinct microstructural characteristics, potentially causing undesirable softening or hardening effects in the heat-affected zone (HAZ). To address these complexities, two distinct titanium concentrations were systematically investigated for the first time using specially developed laboratory-cast alloys. Both alloying configurations were based on the standard S690QL grade, with consistent chemical composition and heat treatment parameters maintained across the samples. For the weldability analysis, three-layer welds were executed using gas metal arc welding (GMAW), allowing for the identification of critical microstructural zones within the HAZ that exhibit significant softening or hardening. The influence of the softened HAZ region on failure mechanisms was assessed through transverse tensile tests. Digital image correlation (DIC) was employed to capture local strain variations across different HAZ regions in situ. With a custom-developed mirror system, local strains in microstructural zones on both the top and bottom surfaces of the weld were recorded simultaneously. This setup enabled a detailed analysis of how weld seam geometry (e.g., V-groove configuration) influences strain gradients. Additionally, the investigation of localized deformation provided insights into how variations in Ti content within the HAZ affect global strain, fracture constriction, fracture location, and overall fracture behavior. T2 - MPA Seminar 2024 Materials Processes Applications CY - Stuttgart, Germany DA - 08.10.2024 KW - HAZ-Softening KW - Digital Image Correlation KW - Cross weld tensile test PY - 2024 AN - OPUS4-61488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -