TY - CONF A1 - Rhode, Michael A1 - Steppan, Enrico A1 - Steger, Jörg A1 - Kannengießer, Thomas T1 - Trapping in T24 steel weld joints – Effects on activation energy for hydrogen diffusion during TDA N2 - Failure cases in the past decade exhibited severe cracking in T24 welds and showed that generally hydrogen-assisted cracking (HAC) occurring up to 200°C cannot be excluded. A basic understanding is necessary on how hydrogen diffusion is influenced by the weld process. In this regard, both weld microstructures HAZ and weld metal have particular influence on hydrogen diffusion compared to the base material. In general, hydrogen diffusion at a certain temperature is described by diffusion coefficients representing an effective value of combined lattice diffusion and effects of reversible hydrogen traps. Those traps are typically precipitates, interstitials, grain boundaries and so on. A common approach to describe the trap character and its effect on diffusion is the determination of so-called activation energy. This can be done by respective thermal desorption analysis (TDA) with linear heating. In the present study, different T24 as-welded microstructures (BM, HAZ, WM) were investigated. For that purpose, electrochemically hydrogen charged specimens were analyzed by TDA with linear heating using a mass spectrometer for detection of ultra-low hydrogen amounts. The results showed that typically the as-welded HAZ had higher energy traps than the tempered base material. Nonetheless two important effects were ascertained: (1) it is strictly necessary to monitor the sample temperature due to its great impact on the hydrogen desorption peak temperature and (2) the real heating rate in the specimen vs. the applied heating rate has to be considered. Both influence the calculated activation energy, i.e. the assigned hydrogen trap character (moderate or strong trap), which changed up to a factor of two in terms of the calculated activation energy. This effect can be much more important compared to the microstructure effect itself. Hence, suitable experimental boundary conditions should be mandatory for the determination of hydrogen trap kinetics. T2 - Intermediate Meeting of IIW Commission C-II-A "Metallurgy of Weld Metal" CY - Trollhättan, Sweden DA - 06.03.2017 KW - Hydrogen KW - Trapping and diffusion KW - Thermal desorption analysis KW - Microstructure KW - Activation energy PY - 2017 AN - OPUS4-39401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias A1 - Steppan, Enrico A1 - Steger, Joerg A1 - Kannengießer, Thomas T1 - Hydrogen trapping in T24 steel weld joints - microstructure influence vs. experimental design effect on activation energy for diffusion N2 - In general, hydrogen assisted cracking is a result of a critical combination of local microstructure, mechanical load and hydrogen concentration. In that connection, welded microstructures of low-alloyed creep-resistant steels can show different hydrogen trapping kinetics. That influences the adsorbed hydrogen concentration as well as the diffusion itself in terms of moderate or strong trapping. A common approach to describe trapping is by the activation energy that is necessary to release hydrogen from a specific trap site. In the present study, T24 base material and weld metal were investigated. For that purpose, electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis(TDA) with linear heating using a mass spectrometer. The results showed a microstructure effect on hydrogen trapping kinetics at elevated temperatures. Additionally, it is necessary to monitor the specimen temperature. A comparison between idealized temperature profile and real specimen temperature showed that the calculated activation energy varied up to a factor of two. Thus, the assigned trap character(moderate or strong) changed. In case of high temperature peaks, this effect could be more important compared to the microstructure effect itself. T2 - 70th IIW Annual Assembly, Commission II-A CY - Shanghai, People's Republic of China DA - 25.06.2017 KW - Creep resisting materials KW - Welding KW - Hydrogen diffusion KW - Thermal desorption analysis KW - Microstructure KW - Experimental design PY - 2017 AN - OPUS4-40954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -