TY - CONF A1 - Rhode, Michael T1 - Repair welding of pressurized in-service hydrogen pipelines - A review on current challenges and strategies N2 - As energy carrier of the future, green hydrogen can make a decisive contribution to a sustainable energy supply. Particularly important is the decarbonization of heavy industry. Therefore, a reliable supply of hydrogen must be guaranteed. A hydrogen pipeline grid can achieve this purpose. In Europe concrete plans for a hydrogen pipeline grid already exist, as the so called “European Hydrogen backbone”. As building a completely new pipeline grid is economically not justifiable, a dual-way strategy of repurposing natural gas (NG) pipelines and newly built pipelines is intended. Long distance pipeline grids require regular maintenance and repairs. For natural gas (NG) pipelines in-service welding is state of the art. Concepts such as hot-tapping (drilling into pressurized pipelines) and “stoppling” (sealing off pipeline sections after installing bypasses or pressure relieves) allow the repair of damaged pipeline sections or the installation of new branches without shutting the pipeline down, which in most cases isn’t possible from an economic standpoint. The EIGA 121/14 guideline already pointed out in 2014 that “a hydrogen hot-tap shall not be considered a routine procedure”. This shows that the determination of the transferability of these repair concepts to hydrogen pipelines is of utmost importance. Due to the degrading effects of hydrogen on mechanical proper-ties, commonly referred to as “hydrogen embrittlement” it is necessary to understand and investigate the occurring effects. In the special case of repair welding on in-service hydrogen pipelines an increased hydro-gen uptake due to a large heat input and microstructural changes in the material needs to be considered. Therefore, material degradation must be investigated to determine whether modifications of repair procedures are necessary to ensure a reliable and safe hydrogen transportation via pipelines. For this reason, this paper gives an overview on existing weld repair concepts and its risks and limitations in terms of hydrogen absorption and possible embrittlement effects when transferred to hydrogen pipelines. The complexity lies in a large variety of materials (low alloyed steels), pipeline diameters and corresponding welded joints. The material compatibility of materials in used (repurposed NG-pipelines) and new condition must be investigated. Particularly for repurposed/used pipelines the effect of a pre-matured/corroded inner surface and sometimes insufficient documentation of the material “history” needs to be considered. An overview on ongoing and completed R&D-projects with respect to repair concepts for hydrogen pipelines and hydrogen effects on pipeline materials is given. The focus hereby lies on possible methods of material testing and modeling. Its current difficulties, limits and possible solution will be discussed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Repair welding KW - Pipelines KW - In-service PY - 2024 AN - OPUS4-59674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Call for interested people to contribute to series of comprehensive papers on welding and joining of components for sustainable energy systems N2 - Joining and welding technologies are of high importance for the manufacturing of components and parts used in sustainable energy generation, conversion, and transport. In that connection, offshore and on-shore installed wind turbines are of high interest for the generation of electrical energy as well as photo-voltaic systems (solar cells). The electricity can be either directly transported or conversed via power-to-gas e.g., to hydrogen. In that scope, electrolyzer up to MW-range are of interest as well as the conver-sion back to electricity via fuel cells. In addition, hydrogen is a key element of the decarburization of in-dustries as well as the mobility sector encompassing sea, air and land transportation driven by hydrogen or its derivates. Well-known examples cover the direct reduction of iron ore to replace the conventional blast furnace process up to gas turbines or fuel cells for home-end use. All mentioned technologies re-quire reliable components, which are to a high extend dependent on joining and especially welding pro-cessing of materials. Especially, the (petro-) chemical industry has many years of experience with both materials used in hydrogen applications. The challenge is e.g., the transition to mass production of sys-tem components of electrolyzers/fuel cells and for distribution grids. At this point, the scalability of cur-rently applied joining processes often limits the economic efficiency, whereas especially laser welding or additive manufacturing will be of high interest. In that connection, it is very important to provide answers by joint research of universities, institutes, and industrial companies. Very often, solutions are already available and “just” have to be investigated and adapted for the new application, like repair welding of NG pipelines. For that reason, we want to set up a series of comprehensive papers with the aforementioned title. The idea is to get an in-depth but manageable overview of the importance of joining technologies in sustaina-ble energy generation, conversion, and transport encompassing current processes, limitations, and fur-ther perspectives. In that connection, the additive manufacturing is gaining more and more attention. If applicable, current challenges in the adaption or creation of new standards/regulations shall be addressed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Welding KW - Comprehensive study KW - Component manufatcturing KW - Additive manufacturing PY - 2024 AN - OPUS4-59676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen trap characterization in 200 and 1,000 bar charged CoCrNi medium entropy alloy compared to steel AISI 316L N2 - Multiple principal element alloys (MPEAs) represent a new class of metallic materials. MPEAs, such as the CoCrNi medium entropy alloy (MEA), have attracted considerable research attention as potential materials to replace, for example, austenitic steels in high-pressure hydrogen environments. Due to the relatively new alloy concept, studies on the specific hydrogen diffusion and trapping behavior of high-pressure hydrogen-charged CoCrNi MEAs are rare so far. For this reason, a CoCrNi-MEA was investigated and compared to an austenitic stainless steel, AISI 316L. Both materials were subjected to high pressure hydrogen loading for two different pressures: 200 bar and 1,000 bar. After charging, thermal desorption analysis (TDA) was used with three heating rates from 0.125 K/s to 0.500 K/s to clarify the specific hydrogen desorption and trapping behavior. To the best of our knowledge, this study is the first to characterize hydrogen diffusion and trapping in 1,000 bar high-pressure charged CoCrNi. For this purpose, the underlying TDA spectra were analyzed in terms of peak deconvolution into a metallurgically justifiable number of defined peaks. The individual peak temperatures and activation energies “EA” were calculated. The following conclusions can be drawn from the results obtained: (1) Exposure to 200 bar or 1,000 bar leads to an increase in hydrogen absorption, regardless of the material investigated, expressed by a significantly increased desorption rate at 1,000 bar. However, the effusion peaks typically occur only at high temperatures. The (2) TDA showed that a four-peak deconvolution scenario was sufficient to describe the trapping behavior and the "EA" indicated the dominance of irreversible traps. In addition, the average trapping energy is higher than in the 316L. The (3) charge pressure related hydrogen solubility was in the order of: CoCrNi-MEA < 316L for both pressures and (4) charging at 1000 bar results in an average concentration of 49 wt.ppm (CoCrNi-MEA) and > 75 wt.ppm (316L). In summary, the CoCrNi-MEA was characterized by a reduced solubility, but very deep entrapment compared to the 316L. For this reason, further application potentials of the MEA may arise. T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - Medium entropy alloy KW - Hydrogen KW - Trapping KW - Diffusion KW - High-pressure charging PY - 2025 AN - OPUS4-64160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component test for the assessment of in-service welding on/onto pressurized hydrogen pipelines N2 - Hydrogen is the energy carrier of tomorrow and requires a reliable large-scale transport infrastructure. In addition to new pipelines, the conversion of existing natural gas (NG) pipeline grids is an essential part. The transport of hydrogen is fundamentally different from that of NG, as hydrogen can be absorbed into the pipeline material. Given the effects of hydrogen embrittlement, the material compatibility (low alloy steels in a wide range of strengths and thicknesses) must be investigated. However, pipelines e.g. require maintenance or the need for installation of additional outlets with the necessity of welding on/onto the pipelines while they are still in service, i.e. with gas flow under high pressure, such as the well-known "hot tapping". This in-service welding poses challenges for hydrogen operations. The challenge can be roughly divided into the possible austenitization of the inner pipe material exposed to hydrogen, the welding itself, which causes an increased temperature range. Both lead to a significant increase in hydrogen solubility and diffusivity compared to room temperature. In addition, possible surface reactions of the present iron oxides (e.g. magnetite or hematite) with the hot hydrogen should be considered. In this context, the knowledge of hydrogen pipelines is scarce due to the lack of operational experience. Fundamental experimental investigations are required to investigate the transferability from NG to hydrogen pipeline grids. For this reason, the present study presents a specially designed mock-up / demonstrator concept for the realistic assessment of the welding process conditions. The mock-up was designed to allow in-situ temperature measurement during the welding process as well as ex-post sample extraction for quantification of the absorbed hydrogen concentration. For safety reasons, the required volume of pressurized hydrogen was limited by inserting a solid cylinder to ensure a 1 cm thick layer of hydrogen gas. Welding experiments on the DN60 and DN200 pressurized mock-ups showed the possibility of safe welding on or onto pressurized hydrogen pipelines. Indeed, the austenitizing temperature was reached on the inner surface of the pipeline, especially on thinner-walled pipelines, using current welding parameter recommendations. This corresponded to an increased hydrogen uptake in the welded area of several ppm. From this point of view, the suggested component concept is a viable strategy for the screening of several materials and welding parameter combinations under realistic operational conditions. T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - In-service welding KW - Pipeline KW - Hydrogen KW - Component test PY - 2025 AN - OPUS4-64159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Joining technologies for hydrogen components: current need and future perspectives N2 - The study provides an overview of the aspects of joining and its importance in manufacturing of components for the more and more important field of hydrogen as key factor for the energy transition to a decarburized future. To this end, the fundamentals of the technology fields of hydrogen production, storage, transport, and application are presented and the state of the art of manufacturing of components for hydrogen technologies by joining is summarized. Based on representative examples from practice, research and development, the importance of joining technology in hydrogen technologies is clearly highlighted and perspectives for the future are derived. From a macroeconomic perspective, the focal points, or trends of joining technologies here include: the erection of new infrastructure for hydrogen storage and transport, and the safe conversion of existing natural gas infrastructure and its challenges for welded materials. In addition, we show the problems that are anticipated with in-service repair welding of hydrogen pipelines. In hydrogen applications, the efficient mass production of fuel cells and electrolysers is becoming increasingly important. For that reason, the importance of additive manufacturing is highlighted. Finally, the challenges for technical regulations and standardization by using hydrogen are shown. T2 - AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 CY - Braga, Portugal DA - 19.10.2023 KW - Hydrogen KW - Infractstructure KW - Joining KW - Welding KW - Research PY - 2023 AN - OPUS4-58674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Welding of in service hydrogen pipelines for repair and maintenance purposes Concepts and Challenges N2 - Hydrogen will make a decisive contribution to a sustainable large-scale energy supply, the transport of which will be based on long-distance pipeline grids. Previous material compatibility studies have shown that the currently used low-alloy pipe steels are generally suitable for hydrogen pipelines. However, this cannot be directly transferred to the case of repair welding. For technical and economic reasons, welding work on hydrogen pipelines in service is usually carried out during operation under continuous pressure and gas flow. In this context, concepts such as hot tapping and stoppling are well established in natural gas (NG) grids and crude oil transportation. In hot tapping, a pressurized pipeline is drilled by flanging a sealed, pressure-tight system consisting of a shut-off valve and drilling equipment. For this purpose, sleeves (made of preformed cylindrical half-shells) must be welded by longitudinal seams and then welded to the product-carrying pipeline by circumferential girth welds. Preheat temperatures of approximately 100 °C must be maintained for most manual metal arc (MMA) / shielded metal arc welding (SMAW) and 250 °C for the interpass temperature in multi-pass welding. This is particularly important for thin-walled pipelines because the austenitizing temperature is exceeded on the inside of the pipeline when the girth welds are welded. As a result, significantly higher hydrogen absorption in the pipeline steel is expected, with possible degradation of mechanical properties or cracking. T2 - MSE 2024: International Materials Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - Hydrogen KW - Repair welding KW - Pipelines KW - In-service PY - 2024 AN - OPUS4-61155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Thickness and microstructure effect on hydrogen diffusion in creep-resistant 9 % Cr P92 steel and P91 weld metal N2 - Martensitic 9 %-Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. The small number of available diffusion coefficients varies already at room temperature by several orders of magnitude (mostly regarded as result of present microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. The diffusion coefficients are calculated by two methods (time-lag and inflection point method) were performed. The results show that, despite of microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. T2 - IIW Annual Assembly, Meeting of Commission IX-C CY - Online meeting DA - 15.07.2021 KW - Creep-resistant steel KW - Diffusion KW - Electrochemical permeation KW - Hydrogen KW - Welding PY - 2021 AN - OPUS4-53048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen embrittlement of steels N2 - Hydrogen assisted cracking of metals is a serious issue in the safety of components, espcially in case of welding. The current presentation gives an overview on specialized testing procedures at Department 9 including the quantitative determination of hydrogen. T2 - HYDROGENIUS BAM Joint Hydrogen Symposium CY - Online meeting DA - 06.07.2021 KW - Hydrogen KW - Embrittlement KW - Degradation KW - Carrier gas hot extraction KW - Welding PY - 2021 AN - OPUS4-53049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Standardization and examples for R & D activities on hydrogen technologies with respect to testing procedures in Germany N2 - This contribution briefly summarizes the standardization activities in accordance with the "Nationale Roadmap Wasserstofftechnologien" and presents selected results on the activities in Germany with scope on hydrogen transport in pipelines. The talk was given during a panel discussion to set-up a steering committee for standardization for hydrogen pipelines and welding , coordinated by the International Institute of Welding. T2 - IIW Annual Assembly, Meeting of Commission XI CY - Singapore DA - 19.07.2023 KW - Hydrogen KW - Welding KW - Pipelines KW - Standardization KW - Research PY - 2023 AN - OPUS4-57976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Intended weld repair of in service hydrogen pipelines N2 - In the course of tomorrow's hydrogen-based energy transition, the construction of the corresponding infrastructure will play a central role. In that context, large diameter long-distance transmission pipelines for hydrogen will be the backbone in the European Union with service pressures from 70 to 90 bar (e.g., de-pending on national regulations). It is a major goal to repurposing the existing natural gas (NG) infrastructure despite the necessity of new pipelines. From that point of view repair welding or further welding of branch pipe etc. can be necessary during in-service, i.e., permanent flow of pressurized hydrogen. The reason is that a shut-down of large diameter pipelines is not easy or sometimes merely impossible. At the moment, it is entirely open if current repair welding procedures for NG pipe-lines can be transferred to pure hydrogen pipelines. For that reason, a collaborative project between BAM, DVGW (German Association for Gas and Water Professions) and a large number of gas grid operators, pipeline manufacturers and construction companies was initiated in 2023 to answer questions on: (1) How many hydrogen is additionally absorbed during the preheating and maintaining at interpass temperature under remaining operational pressures? (2) Is the hydrogen concentration sufficient to reach a critical condition? (3)Which material and weld microstructure are the most susceptible? (4) Is there a difference in the repair welding behavior of NG pipelines with materials in “used” condition? (5) Which welding parameters and joint dimensions must be ensured for safe repair welding? The final aim of this project is the publication of a recommended practice for repair welding of in-service hydrogen pipelines. For that reason, the present study gives an overview on: (A) current practice in repair welding of in-service pipelines and (b) plans for hydrogen pipelines and first results of international research projects. T2 - IIW Annual Assembly, Meeting of Commission XI CY - Singapore DA - 19.07.2023 KW - Hydrogen KW - Repair Welding KW - Pipelines KW - Research PY - 2023 AN - OPUS4-57975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Trapping in T24 steel weld joints – Effects on activation energy for hydrogen diffusion during TDA N2 - Failure cases in the past decade exhibited severe cracking in T24 welds and showed that generally hydrogen-assisted cracking (HAC) occurring up to 200°C cannot be excluded. A basic understanding is necessary on how hydrogen diffusion is influenced by the weld process. In this regard, both weld microstructures HAZ and weld metal have particular influence on hydrogen diffusion compared to the base material. In general, hydrogen diffusion at a certain temperature is described by diffusion coefficients representing an effective value of combined lattice diffusion and effects of reversible hydrogen traps. Those traps are typically precipitates, interstitials, grain boundaries and so on. A common approach to describe the trap character and its effect on diffusion is the determination of so-called activation energy. This can be done by respective thermal desorption analysis (TDA) with linear heating. In the present study, different T24 as-welded microstructures (BM, HAZ, WM) were investigated. For that purpose, electrochemically hydrogen charged specimens were analyzed by TDA with linear heating using a mass spectrometer for detection of ultra-low hydrogen amounts. The results showed that typically the as-welded HAZ had higher energy traps than the tempered base material. Nonetheless two important effects were ascertained: (1) it is strictly necessary to monitor the sample temperature due to its great impact on the hydrogen desorption peak temperature and (2) the real heating rate in the specimen vs. the applied heating rate has to be considered. Both influence the calculated activation energy, i.e. the assigned hydrogen trap character (moderate or strong trap), which changed up to a factor of two in terms of the calculated activation energy. This effect can be much more important compared to the microstructure effect itself. Hence, suitable experimental boundary conditions should be mandatory for the determination of hydrogen trap kinetics. T2 - Intermediate Meeting of IIW Commission C-II-A "Metallurgy of Weld Metal" CY - Trollhättan, Sweden DA - 06.03.2017 KW - Hydrogen KW - Trapping and diffusion KW - Thermal desorption analysis KW - Microstructure KW - Activation energy PY - 2017 AN - OPUS4-39401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Diffusion and trapping of gaseous hydrogen charged CoCrFeMnNi-HEA vs. austenitic steel AISI 316L at pressure up to 1000 bar N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s). The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. T2 - MSE 2024: International Materials Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - High-entropy alloy KW - Hydrogen KW - Trapping KW - Diffusion KW - High-pressure charging PY - 2024 AN - OPUS4-61156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc N2 - In order to satisfy the growing requirements towards lightweight design and resource efficiency in modern steel constructions, e.g. mobile cranes and bridges, high-strength steels with typical yield strength ≥ 690 MPa are coming into use to an increasing extent. However, these steels require special treatment in welding. The susceptibility for degradation of the mechanical properties in presence of hydrogen increases significantly with increasing yield strength. In case of missing knowledge about how and which amount of hydrogen is uptaken during welding, hydrogen assisted cracking (HAC) can be a negative consequence. Moreover, modern weld technology like the modified spray arc process enables welding of narrower weld seams. In this context, a reduced number of weld beads, volume and total heat input are technical and economic benefits. This work presents the influence of welding parameters on the diffusible hydrogen content in both singlepass and multi-layer welds. Different hydrogen concentrations were detected by varied contact tube distance, wire feed speed, arc length as well as varied arc type (transitional arc and modified spray arc). The results show, that all welding parameters have significant influence on the diffusible hydrogen concentration in the single-pass welds. By increasing the number of weld beads in case of multi-layer welding, the hydrogen concentration have been substantially reduced. Whereby, differences in hydrogen concentrations between both arc types are present. T2 - 70th IIW Annual Assembly, Commission II-A CY - Shanghai, People's Republic of China DA - 25.06.2017 KW - Hydrogen KW - MAG Welding KW - High-strength steels KW - Process parameters PY - 2017 AN - OPUS4-40953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaiser, Sebastian A1 - Rhode, Michael T1 - Repair welding of pressurized in-service hydrogen pipelines: A review on current challenges and strategies N2 - As energy carrier of the future, green hydrogen can make a decisive contribution to a sustainable energy supply. Particularly important is the decarbonization of heavy industry. Therefore, a reliable supply of hydrogen must be guaranteed. A hydrogen pipeline grid can achieve this purpose. In Europe concrete plans for a hydrogen pipeline grid already exist, as the so called “European Hydrogen backbone”. As building a completely new pipeline grid is economically not justifiable, a dual-way strategy of repurposing natural gas (NG) pipelines and newly built pipelines is intended. Long distance pipeline grids require regular maintenance and repairs. For NG pipelines in-service welding is state of the art. Concepts such as hot-tapping (drilling into pressurized pipelines) and “stoppling” (sealing off pipeline sections after installing bypasses or pressure relieves) allow the repair of damaged pipeline sections or the installation of new branches without shutting the pipeline down, which in most cases isn’t possible from an economic standpoint. The EIGA 121/14 guideline already pointed out in 2014 that “A hydrogen hot-tap shall not be considered a rou-tine procedure, […]”. This shows that the determination of the transferability of these repair concepts to hydrogen pipelines is of utmost importance. Due to the degrading effects of hydrogen on mechanical properties, commonly referred to as “hydrogen embrittlement” it is necessary to understand and investigate the occurring effects. In the special case of repair welding on in-service hydrogen pipelines an increased hydrogen uptake due to a large heat input and microstructural changes in the material needs to be considered. Therefore, material degradation must be investigated to determine whether modifications of repair procedures are necessary to ensure a reliable and safe hydrogen transportation via pipelines. For this reason, this paper gives an overview on existing weld repair concepts and its risks and limitations in terms of hydrogen absorption and possible embrittlement effects when transferred to hydrogen pipelines. The complexity lies in a large variety of materials (low alloyed steels), pipeline diameters and corresponding weld-ed joints. The material compatibility of materials in used (repurposed NG-pipelines) and new condition must be investigated. Particularly for repurposed/used pipelines the effect of a pre-matured/corroded inner surface and sometimes insufficient documentation of the material “history” needs to be considered. An overview on ongoing and completed R&D-projects with respect to repair concepts for hydrogen pipelines and hydrogen effects on pipeline materials is given. T2 - 77th IIW Annual Assembly and International Conference, Meeting of Commission II-A "Metallurgy of Weld Metals" CY - Ixia, Rhodes Island, Greece DA - 07.07.2024 KW - Hydrogen KW - Pipeline KW - In-Service Welding PY - 2024 AN - OPUS4-60757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Characterization of hydrogen trapping in a CoCrFeMnNi high-entropy alloy charged up to 1000 bar high-pressure hydrogen N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s), see Fig. 1a to d. The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. In addition, the trap occupancy rate must be considered in terms of a pressure-related hydrogen absorption. The derived apparent hydrogen solubility was in the order: 316L < CoCrFeMnNi-HEA for both charging pressures. Especially, the 1,000 bar values lead to noteworthy results with > 70 wt.ppm for the AISI 316L and >130 wt.ppm for the CoCrFeMnNi. In fact, both the hydrogen diffusion and trapping data on gaseous high-pressure hydrogen charged HEAs are rare so far. The results of the present study allow a deeper understanding of hydrogen trapping in the regarded CoCrFeMnNi-system. T2 - 78th IIW Annual Assembly and International Conference CY - Genoa, Italy DA - 26.06.2025 KW - Hydrogen KW - Thermal desorption analysis KW - High-pressure charging KW - Trapping KW - Diffusion PY - 2025 AN - OPUS4-63542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Thickness and microstructure effect on hydrogen diffusion in creep-resistant 9 % Cr P92 steel and P91 weld metal N2 - Martensitic 9 %-Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. The small number of available diffusion coefficients varies already at room temperature by several orders of magnitude (mostly regarded as result of present microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. The diffusion coefficients are calculated by two methods (time-lag and inflection point method) were performed. The results show that, despite of microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. T2 - IIW Intermediate Meeting, Comm. IX-C "Welding of creep and heat-resistant materials" CY - Online meeting DA - 08.03.2021 KW - Hydrogen KW - Welding KW - Diffusion KW - Creep-resistant steel KW - Electrochemical permeation PY - 2021 AN - OPUS4-52239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Diffusion in high-pressure hydrogen charged multi-principal element alloys CoCrFeMnNi and CoCrNi vs. AISI 316L N2 - Multi-principal element alloys (MPEAs) are innovative materials that have attracted extensive research attention within the last decade. MPEAs are characterized by a solid solution of equiatomic metallic elements. Depending on the number of elements, they are also referred as high entropy alloys (HEAs with n ≥ 4 elements like CoCrFeMnNi) and medium-entropy alloys (MEA with n = 3 elements CoCrNi). Depending on the alloy concept, MPEAs show exceptional properties in terms of mechanical performance or corrosion resistance at extreme environments. In that connection, hydrogen and its challenges for the most metallic materials gets more and more important. MPEAs are candidate materials for the substitution of conventional materials like austenitic stainless steels e.g., at very high-pressure up to 1000 bar. Those pressures are typically reached in valves or compressors for refueling of tanks with operational pressure of 700 bar. So far, the susceptibility of HEA/MEAs to hydrogen assisted cracking (if any) and the especially the underlying hydrogen uptake and diffusion was not within the scientific scope and not investigated in detail yet. For that reason, we focused on the hydrogen absorption the characterization of the hydrogen diffusion and trapping at elevated temperatures in a CoCrFeMnNi-HEA (each element with 20 at.-%) and CoCrNi-MEA, each element with 33.3 at.-%). As reference grade, the commercially available austenitic stainless steel AISI 316L was investigated. High-pressure hydrogen charging was conducted at different pressures in autoclave environment with maximum value of 1,000 bar. Thermal desorption analysis (TDA) via carrier gas hot extraction with coupled mass spectrometry was used with a max. heating rate of 0.5 K/s up to 650 °C. The measured desorption spectra of the different samples were deconvoluted into a defined number of individual peaks. The individually calculated peak temperatures allowed the definition of activation energies for predominant trap sites in the respective materials as well as the percentage share of the totally absorbed hydrogen concentration. The results present for the first time the complex interaction of both MPEAs and high-pressure hydrogen charging. A deconvolution of four peaks was selected and a main desorption peak was identified the dominant hydrogen trap containing the biggest share of the absorbed hydrogen concentration. The chemical composition an austenitic phase of both MPEAs is responsible for delayed hydrogen diffusion and strong, but mostly reversible, trapping. The comparison with the 316L samples showed significantly higher activation energies in the MPEAs, whereas hydrogen was also trapped at very high extraction temperatures. The absorbed maximum hydrogen concentration at 1,000 bar was 130 ppm for the CoCrFeMnNi-HEA, 50 ppm for the CoCrNi-MEA and 80 ppm for the 316L. It is interesting that the CoCrFeMnNi-HEA has obviously a way higher trapping capability compared to the conventional austenitic 316L, which could be a major advantage in terms of resistance to hydrogen assisted cracking. T2 - 47th MPA-Seminar CY - Stuttgart, Germany DA - 10.10.2023 KW - High-entropy alloy KW - Hydrogen KW - Diffusion KW - Thermal desorption analysis KW - Multiple-principal element alloy PY - 2023 AN - OPUS4-58675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Development of a component test for assessment of delayed hydrogen assisted cracking susceptibility of thick walled submerged arc welded high strength offshore steels N2 - Offshore Wind Turbines (OWT) are a key factor in tomorrow's sustainable energy generation. The ever-increasing installation depth and weight of OWTs require suitable foundation concepts such as monopiles or tripods. Typically, mild steels such as S420ML are used with plate thicknesses of up to several hundred mm, resulting in high restraints in the welded joints. The large plate thickness requires high-efficiency welding processes such as submerged arc welding (SAW) with multiple wires. Due to the very high stiffness and plate thickness of the large-scale offshore structure, a susceptibility to time-delayed hydrogen assisted cracking (HAC) may occur. The evaluation of this crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e. workshop) scale. The 350 kg mock-up studied consisted of heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged-arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated by using flux in dry (HD < 5 ml/100g Fe) and wet (HD > 15 ml/100g Fe) conditions. Weld residual stresses were determined using a robotic X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and in the heat affected zone, suggesting that these weld sub-zones are the most critical in the case of hydrogen ingress. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after welding, 6 h, 12 h, 24 h, and a maximum of 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and parameters. T2 - MSE 2024: International Materials Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - Hydrogen KW - Offshore wind turbine KW - Component test KW - Submerged arc welding KW - Minimum waiting time PY - 2024 AN - OPUS4-61154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Assessment of in-service welding conditions for pressurized hydrogen pipelines via component test N2 - Hydrogen is the energy carrier of tomorrow. This requires a reliable transport infrastructure with the ability to carry large amounts of hydrogen e.g. for steel industry or chemical industry. The conversion of existing natural gas (NG) grids is an essential part of the worldwide hydrogen strategies, in addition to the construction of new pipelines. In this context, the transportation of hydrogen is fundamental different from NG as hydrogen can be absorbed into the pipeline material. Given the well-known effects of hydrogen embrittlement, the compatibility of the materials for the intended pipelines must be investigated (typically low alloy steels in a wide range of strengths and thicknesses). However, pipelines require frequent maintenance, repair or the need for installation for further outlets. In some cases, it is necessary to perform welding on or onto the pipelines while they are still in service, i.e. with active gas flow under high pressure, e.g. such as the well-known “hot tapping”, see Fig. 1a. This in-service welding causes challenges for hydrogen operations in terms of additional hydrogen absorption during welding and the material compatibility. The challenge can be roughly divided into the possible austenitization of the inner pipe material exposed to hydrogen, which can lead to sufficient hydrogen absorption, and the welding itself, which causes an increased temperature range. Both lead to a significant increase in hydrogen solubility and diffusivity of the respective materials compared to room temperature. In this context, knowledge about hot tapping on hydrogen pipelines is scarce due to the lack of operating experience. Fundamental experimental investigations are required to investigate the transferability from NG to hydrogen pipeline grids. For this reason, the present study introduces a specially designed mock-up / demonstrator concept for the realistic assessment of the welding processing conditions, see Fig. 1b. The mock-up was designed to enable in-situ temperature measurement during welding as well as ex-post extraction of samples for the quantification of the absorbed hydrogen concentration, see Fig. 1c. For safety measures, the necessary pressurized hydrogen volume was limited by the insertion of a solid cylinder ensuring a 1 cm hydrogen gas layer. Welding experiments on the pressurized mock-ups with the diameters DN50 and DN200 have shown that the austenitization temperature can be reached on the inner surface of the pipeline, especially on thinner-walled pipelines, using current welding practices. This corresponds to an increased hydrogen uptake in the welded area of several ppm T2 - 1st Conference on Hydrogen in Materials Science and Engineering (H2-MSE) CY - Siegburg, Germany DA - 11.02.2025 KW - Hydrogen KW - Pipeline KW - In-service welding KW - Component test PY - 2025 AN - OPUS4-62544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Specimen temperature during CGHE and influence on hydrogen determination N2 - Hydrogen determination in weld seams is standardized in ISO 3690. In accordance to this standard, a defined time for hydrogen collection has to be anticipated for different extraction temperatures. In other words, the temperature is the most important value that has to be monitored in addition to the aimed hydrogen determination. The specimen geometry has influence on the real sample temperature during CGHE vs. the adjusted furnace temperature. This presentation gives a short summary on possible influences on the "correct" hydrogen determination temperature during carrier gas hot extraction (CGHE) using infrared radiation driven furnace. The main findings are: (1) specimen surface is important in terms of polished or oxidized condition, (2) specimen geometry is important for fast heating, (3) PID-values of control software are a considerable influence to accelerate the heating process depite thick specimens and (4) independent sample temperature determination before CGHE is strongly recommended. T2 - Intermediate Meeting of IIW Subcommission II-E CY - Genoa, Italy DA - 05.03.2018 KW - Hydrogen KW - Welding KW - Carrier gas hot extraction KW - Temperature KW - Measurement PY - 2018 AN - OPUS4-44427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -