TY - CONF A1 - Rhode, Michael T1 - "On how to influence your results" - A review on carrier gas hot extraction parameters for hydrogen determination in welded specimens N2 - Carrier gas hot extraction (CGHE) is a commonly applied technique for determination of hydrogen in welded joints using a thermal conductivity device (TCD) for quantitative measurement. The CGHE is based on the accelerated hydrogen effusion due to thermal activation at elevated temperatures. The ISO 3690 standard suggests different specimen geometries as well as necessary minimum extraction time vs. temperature. They have the biggest influence on precise hydrogen determination. The present study summarizes the results and experience of numerous test runs with different specimen temperatures, geometries and factors that additionally influence hydrogen determination. They are namely: specimen surface (polished/as-welded), limited TCD sensitivity vs. specimen volume, temperature measurement vs. effects of PID-furnace controller as well as errors due to insufficient data assessment. Summarized, the temperature is the driving force of the CGHE. Two different methods are suggested to increase the heating rate up the reach the desired extraction temperature without changing the experimental equipment. Suggestions are made to improve the reliability of hydrogen determination depended on the hydrogen signal stability during extraction accompanied by evaluation of the recorded data. Generally, independent temperature measurement with calibration specimens is useful for further data analysis, especially if this data is used for calculation of trapping kinetics by thermal desorption analysis (TDA). T2 - IIW Annual Assembly and International Conference 2018, Meeting of Commission II-E CY - Nusa Dua, Bali Island, Indonesia DA - 15.07.2018 KW - Carrier gas hot extraction (CGHE) KW - Welding KW - ISO 3690 KW - Hydrogen KW - Experimental design PY - 2018 AN - OPUS4-45520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - A decarbonized future requires pipelines for CO2? A brief overview on perspectives and challenges N2 - Despite the use of hydrogen, for example, in various industrial production processes, CO2 emissions are still unavoidable in the medium term. For example, cement, lime and glass production or waste recycling (waste-to-energy plants) will continue to emit CO2 due to the processing involved chemical reactions. Conversely, the chemical industry with its value chains needs CO2 / carbon as a primary raw material for all compounds that fall within the organic chemistry. In this connection, carbon capture utilization (CCU) will play a key role here. In addition to “natural” methods (via reforestation and the dilution of moors), carbon capture storage (CSS) is already playing a major role, for example by injecting it into old natural gas underground caverns. The resulting quantities of CO2 have to be transported on a large scale and similar to hydrogen pipelines, there are concrete plans for CO2 pipeline networks. For this reason, this presentation provides an introduction to the topic and briefly outlines the associated challenges. On the one hand, these lie in the qualification (testing and construction) and especially in the operation of the pipelines with regard to strict monitoring of the gas quality (e.g. carbonic acid corrosion) and in the avoidance of critical service conditions (sudden pressure fluctuations), which can lead to localized condensation. Among other things, this can lead to the lowering of the typically welded low-alloyed steel pipes below the ductile brittle transition temperature (DBTT) and thus can have an impact on pipeline integrity. T2 - 49th MPA Conference CY - Stuttgart, Germany DA - 06.10.2025 KW - CO2 KW - Pipeline KW - Welding KW - Testing PY - 2025 AN - OPUS4-64316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Adaption of Heat Control Concepts for Welding Stress Optimization in High-strength Steel Components N2 - High-strength structural steels from 690 MPa are increasingly applied at present. Major reasons are lightweight design trends and potential cost reductions. The structural design of welds and their manufacturing become more challenging with increasing material strength. By reasons of a higher yield ratio of these steels, the development of high residual stresses has to be avoided, since they are detrimental to the components safety and performance. Local restraint stresses and welding loads due to external shrinkage restraints occur. Frequently, this leads to critical tensile residual stresses in the weld and HAZ. In this study, influences of welding process parameters and restraint conditions on the residual stress state in welded components of high-strength steels were investigated. Multilayer GMAW tests under free shrinkage and experiments under well-defined restraints in special in-house developed testing facilities were accomplished. The tests permitted analyses of the resulting local residual stresses measured by means of X-ray diffraction and global reaction stress build-up while welding and cooling. Significant effects were found for heat control, seam configuration and restraint condition. Besides high restraints, elevated preheating and interpass temperatures lead to increased welding stresses. An adaption of welding parameters considering heat control, weld run sequence and seam configuration proved to be beneficial. T2 - 10th Conference on Trends in Welding Research CY - Tokyo, Japan DA - 11.10.2016 KW - Weld heat input KW - Residual Stress KW - High-strength Steel KW - Welding KW - Component Test PY - 2016 AN - OPUS4-37828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Additive manufacturing for components in hydrogen technologies N2 - With the introduction of a hydrogen-based energy and national economy, safety-relevant components for hydrogen technologies are becoming increasingly important. Characteristic of hydrogen technologies are, for example, harsh environmental conditions such as cryogenic or high-pressure storage, corrosion issues in fuel cells and electrolyzers, turbines, and many more. Additive manufacturing of components is becoming increasingly important and irreplaceable for the production of complex technical systems. Using the case studies of burners for gas turbines and electrodes and membranes for polymer (PEMFC) and solid oxide (SOFC) fuel cells, this article shows the potential of additive manufacturing of components. At the same time, however, the challenge of considering divergent mechanical properties depending on the direction of assembly in a "hydrogen-compatible" manner is also highlighted. Finally, the challenges posed by additive manufacturing and hydrogen for materials testing are highlighted under scenarios that are as realistic as possible. T2 - MPA-Workshop Hydrogen CY - Online meeting DA - 10.11.2022 KW - Additive manufacturing KW - Hydrogen KW - Technologies KW - Overview KW - Component PY - 2022 AN - OPUS4-56233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Assessment of in-service welding conditions for pressurized hydrogen pipelines via component test N2 - Hydrogen is the energy carrier of tomorrow. This requires a reliable transport infrastructure with the ability to carry large amounts of hydrogen e.g. for steel industry or chemical industry. The conversion of existing natural gas (NG) grids is an essential part of the worldwide hydrogen strategies, in addition to the construction of new pipelines. In this context, the transportation of hydrogen is fundamental different from NG as hydrogen can be absorbed into the pipeline material. Given the well-known effects of hydrogen embrittlement, the compatibility of the materials for the intended pipelines must be investigated (typically low alloy steels in a wide range of strengths and thicknesses). However, pipelines require frequent maintenance, repair or the need for installation for further outlets. In some cases, it is necessary to perform welding on or onto the pipelines while they are still in service, i.e. with active gas flow under high pressure, e.g. such as the well-known “hot tapping”, see Fig. 1a. This in-service welding causes challenges for hydrogen operations in terms of additional hydrogen absorption during welding and the material compatibility. The challenge can be roughly divided into the possible austenitization of the inner pipe material exposed to hydrogen, which can lead to sufficient hydrogen absorption, and the welding itself, which causes an increased temperature range. Both lead to a significant increase in hydrogen solubility and diffusivity of the respective materials compared to room temperature. In this context, knowledge about hot tapping on hydrogen pipelines is scarce due to the lack of operating experience. Fundamental experimental investigations are required to investigate the transferability from NG to hydrogen pipeline grids. For this reason, the present study introduces a specially designed mock-up / demonstrator concept for the realistic assessment of the welding processing conditions, see Fig. 1b. The mock-up was designed to enable in-situ temperature measurement during welding as well as ex-post extraction of samples for the quantification of the absorbed hydrogen concentration, see Fig. 1c. For safety measures, the necessary pressurized hydrogen volume was limited by the insertion of a solid cylinder ensuring a 1 cm hydrogen gas layer. Welding experiments on the pressurized mock-ups with the diameters DN50 and DN200 have shown that the austenitization temperature can be reached on the inner surface of the pipeline, especially on thinner-walled pipelines, using current welding practices. This corresponds to an increased hydrogen uptake in the welded area of several ppm T2 - 1st Conference on Hydrogen in Materials Science and Engineering (H2-MSE) CY - Siegburg, Germany DA - 11.02.2025 KW - Hydrogen KW - Pipeline KW - In-service welding KW - Component test PY - 2025 AN - OPUS4-62544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Call for interested people to contribute to series of comprehensive papers on welding and joining of components for sustainable energy systems N2 - Joining and welding technologies are of high importance for the manufacturing of components and parts used in sustainable energy generation, conversion, and transport. In that connection, offshore and on-shore installed wind turbines are of high interest for the generation of electrical energy as well as photo-voltaic systems (solar cells). The electricity can be either directly transported or conversed via power-to-gas e.g., to hydrogen. In that scope, electrolyzer up to MW-range are of interest as well as the conver-sion back to electricity via fuel cells. In addition, hydrogen is a key element of the decarburization of in-dustries as well as the mobility sector encompassing sea, air and land transportation driven by hydrogen or its derivates. Well-known examples cover the direct reduction of iron ore to replace the conventional blast furnace process up to gas turbines or fuel cells for home-end use. All mentioned technologies re-quire reliable components, which are to a high extend dependent on joining and especially welding pro-cessing of materials. Especially, the (petro-) chemical industry has many years of experience with both materials used in hydrogen applications. The challenge is e.g., the transition to mass production of sys-tem components of electrolyzers/fuel cells and for distribution grids. At this point, the scalability of cur-rently applied joining processes often limits the economic efficiency, whereas especially laser welding or additive manufacturing will be of high interest. In that connection, it is very important to provide answers by joint research of universities, institutes, and industrial companies. Very often, solutions are already available and “just” have to be investigated and adapted for the new application, like repair welding of NG pipelines. For that reason, we want to set up a series of comprehensive papers with the aforementioned title. The idea is to get an in-depth but manageable overview of the importance of joining technologies in sustaina-ble energy generation, conversion, and transport encompassing current processes, limitations, and fur-ther perspectives. In that connection, the additive manufacturing is gaining more and more attention. If applicable, current challenges in the adaption or creation of new standards/regulations shall be addressed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Welding KW - Comprehensive study KW - Component manufatcturing KW - Additive manufacturing PY - 2024 AN - OPUS4-59676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Diese, Marcel A1 - Rhode, Michael A1 - Schröpfer, Dirk T1 - Characterization of cracking phenomena in TIG welds of high and medium entropy alloy N2 - Multi-element systems with defined entropy (HEA - High Entropy Alloy or MEA - Medium Entropy Alloy) are rather new material concepts that are becoming increasingly important in materials research and development. Some HEA systems show significantly improved properties or combinations of properties, e.g., the overcome of the trade-off between high strength and ductility. Thus, the synthesis, the resulting microstructures, and properties of HEA have been primarily investigated so far. In addition, processing is crucial to achieve a transfer of potential HEA/MEA materials to real applications, e.g. highly stressed components. Since fusion welding is the most important joining process for metals, it is of vital importance to investigate the weldability of these materials. However, this has rarely been the subject of research up to date. For that reason, in this work the weldability depending on the surface preparation of a CoCrFeMnNi-HEA and a CoCrNi-MEA for TIG welding is investigated. The fusion welding of longer plates is described here for the first time for the CoCrNi alloy. The welds of both materials showed distinct formation of cracks in the heat affected zone (HAZ). Optical and scanning electron microscopy analysis clearly confirmed an intergranular fracture topography. But based on the results, the crack mechanism cannot be conclusively clarified as either a liquid metal embrittlement (LME) or hot cracking like liquid film separation occurred. T2 - 2nd International Conference on Advanced Joining Processes CY - Online meeting DA - 21.10.2021 KW - High Entropy Alloy KW - TIG welding KW - Cracking PY - 2021 AN - OPUS4-53607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Characterization of hydrogen trapping in a CoCrFeMnNi high-entropy alloy charged up to 1000 bar high-pressure hydrogen N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s), see Fig. 1a to d. The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. In addition, the trap occupancy rate must be considered in terms of a pressure-related hydrogen absorption. The derived apparent hydrogen solubility was in the order: 316L < CoCrFeMnNi-HEA for both charging pressures. Especially, the 1,000 bar values lead to noteworthy results with > 70 wt.ppm for the AISI 316L and >130 wt.ppm for the CoCrFeMnNi. In fact, both the hydrogen diffusion and trapping data on gaseous high-pressure hydrogen charged HEAs are rare so far. The results of the present study allow a deeper understanding of hydrogen trapping in the regarded CoCrFeMnNi-system. T2 - 78th IIW Annual Assembly and International Conference CY - Genoa, Italy DA - 26.06.2025 KW - Hydrogen KW - Thermal desorption analysis KW - High-pressure charging KW - Trapping KW - Diffusion PY - 2025 AN - OPUS4-63542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Combined effect of heating rate and restraint condition on stress relief cracking susceptibility during PWHT of thick walled Cr Mo V steel submerged arc welded joints N2 - Contemporary steels creep-resistant steels like the 13CrMoV9-10 are used as thick plates e.g., for applications in hydrocrackers. The large plate thickness requires high efficiency welding processes like submerged arc welding (SAW) and a mandatory post weld heat treatment (PWHT). The PWHT-parameters stem from a combination of empirical knowledge and traditional experiments on free shrinking (FS) welds. In that connection, the formation of so-called stress-relief cracking (SRC) must be anticipated. The SRC susceptibility of a welded component is a complex combination and interaction of com-ponent specific, thermal, and metallurgical factors. Many of which have to date not been conclusively researched. For example, it is well known that SRCs develop during PWHT due to formation and growth of carbides on prior austenite grain boundaries, resulting in a significant hardness increase (secondary hardening) and toughness decrease. This leads to a high SRC susceptibility of the coarse grain heat-affected zone (CGHAZ) of the last weld bead during PWHT. This is intensified in case of high residual stresses from the component-specific, structurally induced stiffness. In combination with multi-layer welding this leads to a multiaxial stress distribution. Nonetheless, the combined effect of PWHT and high-residual stresses on the SRC formation is merely unknown. For that reason, this study presents the effect of different heating rates in conjunction with a certain component stiffness. For that reason, SAW joints of 13CrMoV9-10 steel were investigated under FS and defined external restraint condition. T2 - 77th IIW Annual Assembly and International Conference, Meeting of Commission II-A CY - Ixia, Rhodes, Greece DA - 07.07.2024 KW - Stress relief cracking KW - Submerged arc welding KW - Post weld heat treatment KW - Cr-Mo-V steel PY - 2024 AN - OPUS4-60675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Combined effect of heating rate and restraint condition on stress relief cracking susceptibility during PWHT of thick-walled Cr-Mo-V steel submerged arc welded joints N2 - Contemporary steels creep-resistant steels like the 13CrMoV9-10 are used as thick plates e.g., for applications in hydrocrackers. The large plate thickness requires high efficiency welding processes like submerged arc welding (SAW) and a mandatory post weld heat treatment (PWHT). The PWHT-parameters stem from a combination of empirical knowledge and traditional experiments on free shrinking (FS) welds. In that connection, the formation of so-called stress-relief cracking (SRC) must be anticipated. The SRC susceptibility of a welded component is a complex combination and interaction of com-ponent specific, thermal, and metallurgical factors. Many of which have to date not been conclusively researched. For example, it is well known that SRCs develop during PWHT due to formation and growth of carbides on prior austenite grain boundaries, resulting in a significant hardness increase (secondary hardening) and toughness decrease. This leads to a high SRC susceptibility of the coarse grain heat-affected zone (CGHAZ) of the last weld bead during PWHT. This is intensified in case of high residual stresses from the component-specific, structurally induced stiffness. In combination with multi-layer welding this leads to a multiaxial stress distribution. Nonetheless, the combined effect of PWHT and high-residual stresses on the SRC formation is merely unknown. For that reason, this study presents the effect of different heating rates in conjunction with a certain component stiffness. For that reason, SAW joints of 13CrMoV9-10 steel were investigated under FS and defined external restraint condition. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Stress relief cracking KW - Welding KW - Post weld heat treatment KW - Submerged arc welding KW - Cr-Mo-V steel KW - Creep-resisting steel PY - 2024 AN - OPUS4-59673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component test for simplified testing of hydrogen‐assisted delayed cold cracking of high‐strength, submerged arc‐welded offshore steel structures N2 - Offshore Wind Turbines (OWT) are a key factor in tomorrow's sustainable energy generation. The ever-increasing installation depth and weight of OWTs require suitable foundation concepts such as monopiles or tripods. Typically, mild steels such as S420ML are used with plate thicknesses of up to several hundred mm, resulting in high restraints in the welded joints. The large plate thickness requires high-efficiency welding processes such as submerged arc welding (SAW) with multiple wires. Due to the very high stiffness and plate thickness of the large-scale offshore structure, a susceptibility to time-delayed hydrogen assisted cracking (HAC) may occur. The evaluation of this crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e. workshop) scale. The 350 kg mock-up studied consisted of heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged-arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated by using flux in dry (HD < 5 ml/100g Fe) and wet (HD > 15 ml/100g Fe) conditions. Weld residual stresses were determined using a robotic X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and in the heat affected zone, suggesting that these weld sub-zones are the most critical in the case of hydrogen ingress. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after welding, 6 h, 12 h, 24 h, and a maximum of 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and parameters. T2 - MPA Seminar 2024 - Materials, Processes, Applications CY - Stuttgart, Germany DA - 08.10.2024 KW - Hydrogen KW - Offshore wind turbine KW - Component test KW - Submerged arc welding KW - Minimum waiting time PY - 2024 AN - OPUS4-61323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component test for simulation of in-service welding on hydrogen pipelines N2 - Hydrogen is set as the energy carrier of tomorrow and most countries will achieve large-scale hydrogen transport through the conversion of the natural gas (NG) grid and the construction of new pipelines. The interaction between hydrogen and the pipeline materials differs fundamentally from that of NG, as hydrogen is readily absorbed into the material. Considering the possible hydrogen embrittlement (HE), the compatibility of the pipeline materials (low-alloyed steels with a wide strength/thickness range) must be investigated. However, pipelines require intervention for maintenance, repair, or grid expansion with welding on/onto the pipelines while in service, i.e. the well-known "hot tapping" and "stoppling". The challenges compared to NG can be broadly divided into the possible austenitization of the inner pipe material exposed to hydrogen and the welding itself. Both result in a significant increase in hydrogen solubility and could potentially pose challenges in terms of HE. Emphasis is placed on the word "could" because knowledge of "hot tapping" on hydrogen pipelines is scarce due a lack of service experience. To this end, this study proposes a concept for a component-like demonstrator with the objectives: (1) safe feasibility of "hot tapping" on pressurized model hydrogen pipeline sections, (2) facilitate ex-post sample extraction for the purpose of quantifying the absorbed hydrogen concentrations, and (3) ensure in-situ temperature measurement during welding to monitor the pipeline surface temperature. For safety reasons in the event of an unintentional "burn-through", a solid cylinder was inserted in the demonstrator to restrict the hydrogen gas volume to a small, pressurized layer. Reference pipeline surface temperature measurements were ensured on comparable, unpressurized geometries. The investigated range of welding conditions was investigated for representative material/thickness combinations (DN60 to DN300), suggesting the feasibility of the demonstrator for the determination of reliable in-service welding conditions for both installed and new pipelines for hydrogen service. T2 - 49th MPA Conference CY - Stuttgart, Germany DA - 06.10.2025 KW - Hydrogen KW - Pipeline KW - In-service welding KW - Component test PY - 2025 AN - OPUS4-64317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component test for the assessment of in-service welding on/onto pressurized hydrogen pipelines N2 - Hydrogen is the energy carrier of tomorrow and requires a reliable large-scale transport infrastructure. In addition to new pipelines, the conversion of existing natural gas (NG) pipeline grids is an essential part. The transport of hydrogen is fundamentally different from that of NG, as hydrogen can be absorbed into the pipeline material. Given the effects of hydrogen embrittlement, the material compatibility (low alloy steels in a wide range of strengths and thicknesses) must be investigated. However, pipelines e.g. require maintenance or the need for installation of additional outlets with the necessity of welding on/onto the pipelines while they are still in service, i.e. with gas flow under high pressure, such as the well-known "hot tapping". This in-service welding poses challenges for hydrogen operations. The challenge can be roughly divided into the possible austenitization of the inner pipe material exposed to hydrogen, the welding itself, which causes an increased temperature range. Both lead to a significant increase in hydrogen solubility and diffusivity compared to room temperature. In addition, possible surface reactions of the present iron oxides (e.g. magnetite or hematite) with the hot hydrogen should be considered. In this context, the knowledge of hydrogen pipelines is scarce due to the lack of operational experience. Fundamental experimental investigations are required to investigate the transferability from NG to hydrogen pipeline grids. For this reason, the present study presents a specially designed mock-up / demonstrator concept for the realistic assessment of the welding process conditions. The mock-up was designed to allow in-situ temperature measurement during the welding process as well as ex-post sample extraction for quantification of the absorbed hydrogen concentration. For safety reasons, the required volume of pressurized hydrogen was limited by inserting a solid cylinder to ensure a 1 cm thick layer of hydrogen gas. Welding experiments on the DN60 and DN200 pressurized mock-ups showed the possibility of safe welding on or onto pressurized hydrogen pipelines. Indeed, the austenitizing temperature was reached on the inner surface of the pipeline, especially on thinner-walled pipelines, using current welding parameter recommendations. This corresponded to an increased hydrogen uptake in the welded area of several ppm. From this point of view, the suggested component concept is a viable strategy for the screening of several materials and welding parameter combinations under realistic operational conditions. T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - In-service welding KW - Pipeline KW - Hydrogen KW - Component test PY - 2025 AN - OPUS4-64159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Determination of inner pipe surface temperatures during in-service welding on hydrogen pipelines by means of component-like mock up experiments N2 - Hydrogen is considered as one of the most important energy carriers in the future. The necessary large-scale transport over long distances requires a suitable pipeline infrastructure. Current plannings encompass a dual-way strategy of repurposing existing natural gas (NG) pipelines, supplemented by the construction of new hydrogen pipelines. In some cases, such as necessary grid extensions or installation of bypasses in case of repair work, techniques like “hot tapping” are applied. These techniques include so-called in-service welding on pressurized pipelines and are state-of-the-art for NG grids and oil pipelines. The existing NG pipeline grid consists of a wide range of materials with different strengths, diameters, and wall thicknesses. In this context, the material compatibility is crucial. The main difference between hydrogen and NG is that hydrogen can both penetrate the material and cause hydrogen embrittlement. In that connection, in-service welding encompasses elevated temperatures for a certain time during the typically multi-layer welding process. Locally even austenitization temperature can be reached or surpassed. Austenite has a higher hydrogen solubility at a significantly lower diffusion rate, which could lead to a critical hydrogen accumulation. Especially the inner pipe surface temperature is from utmost interest, as this interface is exposed to the pressurized hydrogen (up to 100 bar). However, direct measurement of the locally occurring temperatures is very challenging. For this reason, a component-like geometry was developed. The geometry consists of a pipeline segment with a metal sheet joined to the pipe segment, representing similar heat dissipation conditions as in the field. In addition, typical welding parameters were applied that are currently used in the NG grid. This allows the welding of realistic multi-layer fillet welds on the outer pipe wall with simultaneous temperature measurement using manifold thermocouples at defined positions: (1) adjacent to the weld seam on the outer pipe surface, (2) on the inner pipe surface and (3) on the welded metal sheet. To ensure realistic conditions, manual shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) was investigated. The effects of different wall thicknesses and welding heat inputs on the temperature distribution and peak temperatures achieved on the inner pipe surface during welding vary depending on the chosen method. Peak temperatures above austenitization temperature up to 1078 °C have been measured on L245 pipes with wall thickness of 3.6 mm. For pipes made from higher strength materials, such as L485, with a wall thickness of 8 mm, peak temperatures between 607 °C and 755 °C were recorded. Temperature and austenitization directly affects hydrogen diffusivity and solubility, showing the importance of the findings. The temperature profile and cooling conditions influence the mechanical properties of the material as well. For this reason, metallurgical investigations are carried out to assess the hardness and microstructure of the welds. Hardening up to 248 HV10 was detected in the heat-affected zone (HAZ) of the top layer, which could lead to a locally increased susceptibility to hydrogen assisted cracking. Meanwhile, the minimum hardness found in the HAZ of the root layer was as low as 144 HV10, indicating a softening. The results of this study provide valuable insights into the suitability of existing materials and geometries for hydrogen transport. Secondly, the data collected will serve as a basis for planned numerical simulations to further improve knowledge and optimize welding processes to ensure the integrity and safety of hydrogen pipelines. T2 - IIW Intermediate Meeting, Com. II-A CY - Trollhättan, Sweden DA - 10.03.2025 KW - Testing KW - In-service welding KW - Hydrogen KW - Pipelines PY - 2025 AN - OPUS4-62690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Development of a component test for assessment of delayed hydrogen assisted cracking susceptibility of thick walled submerged arc welded high strength offshore steels N2 - Offshore Wind Turbines (OWT) are a key factor in tomorrow's sustainable energy generation. The ever-increasing installation depth and weight of OWTs require suitable foundation concepts such as monopiles or tripods. Typically, mild steels such as S420ML are used with plate thicknesses of up to several hundred mm, resulting in high restraints in the welded joints. The large plate thickness requires high-efficiency welding processes such as submerged arc welding (SAW) with multiple wires. Due to the very high stiffness and plate thickness of the large-scale offshore structure, a susceptibility to time-delayed hydrogen assisted cracking (HAC) may occur. The evaluation of this crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e. workshop) scale. The 350 kg mock-up studied consisted of heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged-arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated by using flux in dry (HD < 5 ml/100g Fe) and wet (HD > 15 ml/100g Fe) conditions. Weld residual stresses were determined using a robotic X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and in the heat affected zone, suggesting that these weld sub-zones are the most critical in the case of hydrogen ingress. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after welding, 6 h, 12 h, 24 h, and a maximum of 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and parameters. T2 - MSE 2024: International Materials Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - Hydrogen KW - Offshore wind turbine KW - Component test KW - Submerged arc welding KW - Minimum waiting time PY - 2024 AN - OPUS4-61154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Diffusion and trapping of gaseous hydrogen charged CoCrFeMnNi-HEA vs. austenitic steel AISI 316L at pressure up to 1000 bar N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s). The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. T2 - MSE 2024: International Materials Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - High-entropy alloy KW - Hydrogen KW - Trapping KW - Diffusion KW - High-pressure charging PY - 2024 AN - OPUS4-61156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Diffusion in high-pressure hydrogen charged multi-principal element alloys CoCrFeMnNi and CoCrNi vs. AISI 316L N2 - Multi-principal element alloys (MPEAs) are innovative materials that have attracted extensive research attention within the last decade. MPEAs are characterized by a solid solution of equiatomic metallic elements. Depending on the number of elements, they are also referred as high entropy alloys (HEAs with n ≥ 4 elements like CoCrFeMnNi) and medium-entropy alloys (MEA with n = 3 elements CoCrNi). Depending on the alloy concept, MPEAs show exceptional properties in terms of mechanical performance or corrosion resistance at extreme environments. In that connection, hydrogen and its challenges for the most metallic materials gets more and more important. MPEAs are candidate materials for the substitution of conventional materials like austenitic stainless steels e.g., at very high-pressure up to 1000 bar. Those pressures are typically reached in valves or compressors for refueling of tanks with operational pressure of 700 bar. So far, the susceptibility of HEA/MEAs to hydrogen assisted cracking (if any) and the especially the underlying hydrogen uptake and diffusion was not within the scientific scope and not investigated in detail yet. For that reason, we focused on the hydrogen absorption the characterization of the hydrogen diffusion and trapping at elevated temperatures in a CoCrFeMnNi-HEA (each element with 20 at.-%) and CoCrNi-MEA, each element with 33.3 at.-%). As reference grade, the commercially available austenitic stainless steel AISI 316L was investigated. High-pressure hydrogen charging was conducted at different pressures in autoclave environment with maximum value of 1,000 bar. Thermal desorption analysis (TDA) via carrier gas hot extraction with coupled mass spectrometry was used with a max. heating rate of 0.5 K/s up to 650 °C. The measured desorption spectra of the different samples were deconvoluted into a defined number of individual peaks. The individually calculated peak temperatures allowed the definition of activation energies for predominant trap sites in the respective materials as well as the percentage share of the totally absorbed hydrogen concentration. The results present for the first time the complex interaction of both MPEAs and high-pressure hydrogen charging. A deconvolution of four peaks was selected and a main desorption peak was identified the dominant hydrogen trap containing the biggest share of the absorbed hydrogen concentration. The chemical composition an austenitic phase of both MPEAs is responsible for delayed hydrogen diffusion and strong, but mostly reversible, trapping. The comparison with the 316L samples showed significantly higher activation energies in the MPEAs, whereas hydrogen was also trapped at very high extraction temperatures. The absorbed maximum hydrogen concentration at 1,000 bar was 130 ppm for the CoCrFeMnNi-HEA, 50 ppm for the CoCrNi-MEA and 80 ppm for the 316L. It is interesting that the CoCrFeMnNi-HEA has obviously a way higher trapping capability compared to the conventional austenitic 316L, which could be a major advantage in terms of resistance to hydrogen assisted cracking. T2 - 47th MPA-Seminar CY - Stuttgart, Germany DA - 10.10.2023 KW - High-entropy alloy KW - Hydrogen KW - Diffusion KW - Thermal desorption analysis KW - Multiple-principal element alloy PY - 2023 AN - OPUS4-58675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Dissimilar metal TIG weld joints of multiple principal element alloys (MPEA) to austenitic steel 304 N2 - Multi-element alloys (MPEA - Multiple Principal Element Alloys) represent a new class of materials consisting of at least three alloying elements, each with 5 to 35 atomic %. This material class includes high-entropy alloys (HEA, with n ≥ 4 elements). The underlying alloying concept differs fundamentally from conventional materials such as the Fe-based steel. For this purpose, the alloying elements are specifically selected, and the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. The aim is to identify highly innovative MPEA with individually adjustable properties for industrial applications. In the last 20 years, however, the focus has been on pure material synthesis. With the increase in available material quantities, the focus is on processing issues such as joining and welding processes. In that connection, the weldability of MPEAs has received very little attention so far. Experience with dissimilar metal welds (DMWs) is completely lacking but is essential for the application of these materials if joint to conventional materials. This study presents selected experimental results on the weldability of MPEA-DMWs and the resulting microstructures. For this purpose, the equiatomic CoCrFeMnNi (HEA) was investigated in cold-rolled (CR) and heat-treated (HT) condition and joined by tungsten inert gas (TIG) welding to an austenitic stainless steel 304. The DMWs showed defect-free conditions (no lack of fusion, cracks and so on), whereas the cold-rolling increases the microhardness. The global mechanical properties were obtained by instrumented tensile tests of cross-weld samples and showed sufficient yield and tensile strength comparable to that of the individual base materials (BM). The local strain conditions were determined by digital image correlation and showed the highest local strains to occur in the intermixed weld metal. Indeed, the preferred fracture location of the cross-weld tensile samples was in the weld metal. Finally, the experiments proofed the weldability of the MPEAs to conventional 304. This enables targeted further considerations for example as structural materials. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - Multi-principal element alloys KW - TIG welding KW - Dissimilar metal weld (DMW) joint KW - Microstructure KW - Mechanical properties KW - Digital Image Correlation (DIC) PY - 2023 AN - OPUS4-58222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Effect of Ti and Nb on hydrogen trapping in welded S690 HSLA steel and effect on delayed cold cracking N2 - Fine-grain, high-strength, low-alloy (HSLA) structural steels with yield strengths > 600 MPa are now the state of the art in construction applications such as mobile cranes and civil engineering. HSLA grades derive their strength from a combination of specific heat treatment and the underlying chemical composition. In this context, Ti or Nb are essential to obtain a fine-grained microstructure as well as the necessary carbides or nitrides for precipitation strengthening. In this context, the specific effect of Ti or Nb-rich compounds on hydrogen trapping and diffusion is well known for special laboratory cast alloys, but unknown for realistic steel compositions. For this reason, a series of S690Q-based alloys were synthesized, close to a real steel composition, but with well controlled Ti or Nb additions in different amounts. Specimens were obtained from these alloys by electrochemical discharge machining (EDM). The specimens were tested using the well-established electrochemical permeation technique. From the experimental results, the hydrogen diffusion coefficients and the analytical subsurface hydrogen concentration were calculated. In addition, the hydrogen trapping behavior at elevated temperatures was interpreted by thermal desorption analysis (TDA) using different heating rates of hydrogen charged samples. The results showed that in contrast to metallurgically "pure" laboratory cast alloys, realistic chemical compositions were similar in their hydrogen trapping behavior, despite some small differences. All investigated steel grades exhibited shallow and reversible hydrogen trapping, regardless of their chemical composition. Of course, the experiments only allowed the calculation of effective diffusion coefficients and trapping energies, which represent an average of the entire microstructure. Nevertheless, HSLA steels are typically joined by arc welding, which includes the risk of delayed hydrogen assisted cracking. From the point of view of welding practice, however, a more or less identical hydrogen diffusion behavior means that no special "metallurgically specific", justifiable measures need to be considered, despite the well-established processes such as "soaking" or dehydrogenation heat treatment. Of course, a closer look at the heat-affected zone (HAZ) or the weld metal of the specific welds is necessary. However, especially in the case of thick-walled welds, it is assumed that the weld metal and HAZ are similar to the base material due to the multi-layer welding, which results in multiple annealing cycles of the weld metal and HAZ. T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - Hydrogen assisted cracking KW - HSLA KW - Diffusion KW - Electrochemical permeation PY - 2025 AN - OPUS4-64156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Evaluation of local strain behavior of cross-weld tensile specimens of micro-alloyed high-strength steels by digital image correlation N2 - Microalloying elements such as Nb and Ti play a decisive function in achieving the desired mechanical strength of quenched and tempered, high-strength fine-grain structural steels with a nominal yield strength ≥ 690 MPa. The current specifications for the chemical composition only provide manufacturers with upper limits. However, even minor deviations in the alloy concept can have a significant impact on the mechanical properties. Consequently, accurate prediction of weldability and the integrity of welded joints becomes difficult or even impossible due to differences in composition and the resulting microstructures. Undesirable consequences include a possible softening of the heat-affected zone (HAZ) or, conversely, hardening effects. In view of these challenges, various microalloying strategies with different Ti and Nb contents are being systematically investigated for the first time using specially developed laboratory casting alloys. Each alloying route is based on the common S690QL, maintaining both the chemical composition and the heat treatment parameters. To analyse the weldability, three-layer welds were performed using gas metal arc welding (GMAW) and critical microstructures, such as areas of the heat-affected zone (HAZ) that exhibit significant softening or hardening, were identified. The effect of the softened HAZ region on failure was evaluated using transverse tensile specimens. Digital image correlation (DIC) is used to image changes in local strains in different HAZ regions in situ. Using a specially developed mirror system, the local strains of the microstructure zones on the top and bottom of the weld are recorded simultaneously. This makes it possible to analyse how the weld seam geometry (e.g., V-seam) influences the strain gradients. In addition, the analysis of the local deformation helps to understand the effects of the softened HAZ on the global strain, the fracture constriction, the fracture position, and the overall fracture behavior. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Welding KW - High-strength steel KW - Alloy concept KW - Cross-weld tensile sample KW - Mechanical properties PY - 2024 AN - OPUS4-59675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -